scholarly journals Determination of Fundamental Properties of an M31 Globular Cluster from Main-Sequence Photometry

2010 ◽  
Vol 122 (896) ◽  
pp. 1164-1170 ◽  
Author(s):  
Jun Ma ◽  
Zhenyu Wu ◽  
Song Wang ◽  
Zhou Fan ◽  
Xu Zhou ◽  
...  
2012 ◽  
Vol 8 (S289) ◽  
pp. 398-401
Author(s):  
Jun Ma

AbstractWe determined the age of the M31 globular cluster B379 using isochrones of the Padova stellar evolutionary models. At the same time, the cluster's metal abundance, its distance modulus, and reddening value were also obtained. The results obtained in this paper are consistent with previous determinations, including the age. Brown et al. constrained the age of B379 by comparing its color–magnitude diagram with isochrones of the 2006 VandenBerg models. Therefore, this paper confirms the consistency of the age scale of B379 between the Padova isochrones and the 2006 VandenBerg isochrones. The results of B379 obtained in this paper are: metallicity [M/H] = log(Z/Z⊙) = −0.325 dex, age τ = 11.0 ± 1.5 Gyr, reddening E(B − V) = 0.08 mag, and distance modulus (m − M)0 = 24.44 ± 0.10 mag. Using the metallicity, the reddening value and the distance modulus obtained in this paper, we constrained the age of B379 by comparing its multicolor photometry with theoretical stellar population synthesis models. The age of B379 obtained is 10.6−0.76+0.92 Gyr, which is in very good agreement with the determination from main-sequence photometry.


2014 ◽  
Vol 9 (S307) ◽  
pp. 385-386
Author(s):  
F. Martins ◽  
A. Hervé ◽  
J.-C. Bouret ◽  
W. L. F. Marcolino ◽  
G. A. Wade ◽  
...  

AbstractWe present preliminary results of the determination of fundamental parameters of single O-type stars in the MiMeS survey. We present the sample and we focus on surface CNO abundances, showing how they change as stars evolve off the zero-age main sequence.


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


2009 ◽  
Vol 5 (S268) ◽  
pp. 187-188
Author(s):  
Donatella Romano ◽  
M. Tosi ◽  
M. Cignoni ◽  
F. Matteucci ◽  
E. Pancino ◽  
...  

AbstractIn this contribution we discuss the origin of the extreme helium-rich stars which inhabit the blue main sequence (bMS) of the Galactic globular cluster Omega Centauri. In a scenario where the cluster is the surviving remnant of a dwarf galaxy ingested by the Milky Way many Gyr ago, the peculiar chemical composition of the bMS stars can be naturally explained by considering the effects of strong differential galactic winds, which develop owing to multiple supernova explosions in a shallow potential well.


2015 ◽  
Vol 12 (S316) ◽  
pp. 361-362
Author(s):  
Yue Wang ◽  
Francesca Primas ◽  
Corinne Charbonnel ◽  
Mathieu Van der Swaelmen ◽  
William Chantereau ◽  
...  

AbstractA spectroscopic study comparing the [Na/Fe] distributions of RGB and AGB stars in the Galactic globular cluster (GC) NGC 6752 found that there was no Na-rich, 2nd-generation star along the early-AGB of this cluster. This came as a surprise since in this GC, as well as other Galactic GCs studied so far, 1st- and 2nd-generation stars have usually been found from the main sequence turnoff up to the red giant branch. To investigate whether the failure of a significant fraction of stars to ascend the AGB also happens to other GCs, we studied a sample of AGB and RGB stars in NGC 2808 observed at the ESO/VLT with FLAMES. Contrary to NGC 6752, we find that the AGB and RGB stars we studied in NGC 2808 have comparable [Na/Fe] dispersions.


2009 ◽  
Vol 5 (S268) ◽  
pp. 387-394
Author(s):  
Sylvie Vauclair

AbstractAsteroseismology is a powerful tool to derive stellar parameters, including the helium content and internal helium gradients, and the macroscopic motions which can lead to lithium, beryllium, and boron abundance variations. Precise determinations of these parameters need deep analyses for each individual stars. After a general introduction on helio and asteroseismology, I first discuss the solar case, the results which have been obtained in the past two decades, and the crisis induced by the new determination of the abundances of heavy elements. Then I discuss asteroseismology in relation with light element abundances, especially for the case of main sequence stars.


2019 ◽  
Vol 623 ◽  
pp. A84 ◽  
Author(s):  
J. S. Clark ◽  
M. E. Lohr ◽  
L. R. Patrick ◽  
F. Najarro

The Arches is one of the youngest, densest and most massive clusters in the Galaxy. As such it provides a unique insight into the lifecycle of the most massive stars known and the formation and survival of such stellar aggregates in the extreme conditions of the Galactic Centre. In a previous study we presented an initial stellar census for the Arches and in this work we expand upon this, providing new and revised classifications for ∼30% of the 105 spectroscopically identified cluster members as well as distinguishing potential massive runaways. The results of this survey emphasise the homogeneity and co-evality of the Arches and confirm the absence of H-free Wolf-Rayets of WC sub-type and predicted luminosities. The increased depth of our complete dataset also provides significantly better constraints on the main sequence population; with the identification of O9.5 V stars for the first time we now spectroscopically sample stars with initial masses ranging from ∼16 M⊙ to ≥120 M⊙. Indeed, following from our expanded stellar census we might expect ≳50 stars within the Arches to have been born with masses ≳60 M⊙, while all 105 spectroscopically confirmed cluster members are massive enough to leave relativistic remnants upon their demise. Moreover the well defined observational properties of the main sequence cohort will be critical to the construction of an extinction law appropriate for the Galactic Centre and consequently the quantitative analysis of the Arches population and subsequent determination of the cluster initial mass function.


1988 ◽  
Vol 108 ◽  
pp. 217-218
Author(s):  
Masatoshi Kitamura ◽  
Yasuhisa Nakamura

The ordinary semi-detached close binary system consists of a main-sequence primary and subgiant (or giant) secondary component where the latter fills the Roche lobe. From a quantitative analysis of the observed ellipticity effect, Kitamura and Nakamura (1986) have deduced empirical values of the exponent of gravity-darkening for distorted main-sequence stars in detached systems and found that the empirical values of the exponent for these stars with early-type spectra are close to the unity, indicating that the subsurface layers of early-main sequence stars in close binaries are actually in radiative equilibrium. The exponent of gravity-darkening can be defined by H ∝ gα with H as the bolonetric surface brightness and g as the local gravity on the stellar surface.


Sign in / Sign up

Export Citation Format

Share Document