scholarly journals Environmental fluctuations can promote evolutionary rescue in high-extinction-risk scenarios

2020 ◽  
Vol 287 (1932) ◽  
pp. 20201144
Author(s):  
James H. Peniston ◽  
Michael Barfield ◽  
Andrew Gonzalez ◽  
Robert D. Holt

Substantial environmental change can force a population onto a path towards extinction, but under some conditions, adaptation by natural selection can rescue the population and allow it to persist. This process, known as evolutionary rescue, is believed to be less likely to occur with greater magnitudes of random environmental fluctuations because environmental variation decreases expected population size, increases variance in population size and increases evolutionary lag. However, previous studies of evolutionary rescue in fluctuating environments have only considered scenarios in which evolutionary rescue was likely to occur. We extend these studies to assess how baseline extinction risk (which we manipulated via changes in the initial population size, degree of environmental change or mutation rate) influences the effects of environmental variation on evolutionary rescue following an abrupt environmental change. Using a combination of analytical models and stochastic simulations, we show that autocorrelated environmental variation hinders evolutionary rescue in low-extinction-risk scenarios but facilitates rescue in high-risk scenarios. In these high-risk cases, the chance of a run of good years counteracts the otherwise negative effects of environmental variation on evolutionary demography. These findings can inform the development of effective conservation practices that consider evolutionary responses to abrupt environmental changes.

2021 ◽  
Vol 17 (12) ◽  
Author(s):  
Philip B. Greenspoon ◽  
Hamish G. Spencer

Rapid environmental changes are putting numerous species at risk of extinction. For migration-limited species, persistence depends on either phenotypic plasticity or evolutionary adaptation (evolutionary rescue). Current theory on evolutionary rescue typically assumes linear environmental change. Yet accelerating environmental change may pose a bigger threat. Here, we present a model of a species encountering an environment with accelerating or decelerating change, to which it can adapt through evolution or phenotypic plasticity (within-generational or transgenerational). We show that unless either form of plasticity is sufficiently strong or adaptive genetic variation is sufficiently plentiful, accelerating or decelerating environmental change increases extinction risk compared to linear environmental change for the same mean rate of environmental change.


2015 ◽  
Vol 112 (9) ◽  
pp. 2782-2787 ◽  
Author(s):  
Jake M. Ferguson ◽  
José M. Ponciano

Environmental stochasticity is an important concept in population dynamics, providing a quantitative model of the extrinsic fluctuations driving population abundances. It is typically formulated as a stochastic perturbation to the maximum reproductive rate, leading to a population variance that scales quadratically with abundance. However, environmental fluctuations may also drive changes in the strength of density dependence. Very few studies have examined the consequences of this alternative model formulation while even fewer have tested which model better describes fluctuations in animal populations. Here we use data from the Global Population Dynamics Database to determine the statistical support for this alternative environmental variance model in 165 animal populations and test whether these models can capture known population–environment interactions in two well-studied ungulates. Our results suggest that variation in the density dependence is common and leads to a higher-order scaling of the population variance. This scaling will often stabilize populations although dynamics may also be destabilized under certain conditions. We conclude that higher-order environmental variation is a potentially ubiquitous and consequential property of animal populations. Our results suggest that extinction risk estimates may often be overestimated when not properly taking into account how environmental fluctuations affect population parameters.


2019 ◽  
Author(s):  
Nikola Petkovic ◽  
Nick Colegrave

AbstractThe continued existence of sex despite many costs it entails still lacks an adequate explanation. Previous experimental studies demonstrated that sex enhances the rate of adaptation in changing environments. To the best of our knowledge, no experimental study that investigated the effects of sex on adaptation has manipulated the rate of environmental change, which is negatively correlated with the probability of population survival. Since the patterns of adaptation (adaptive walk) depend on the rate of environmental change, the overall effects of sex may also be altered by this factor.To investigate the interplay of sex and the rate of environmental deterioration, we carried out a long-term selection experiment with a unicellular alga (Chlamydomonas reinhardtii), by manipulating mode of reproduction (asexual or sexual populations) and the rate of environmental deterioration (an increase of salt concentration). We monitored both the population size and extinction dynamics and estimated the probability of evolutionary rescue.We detected a faster decline of population size in the asexual group relative to both the obligate sexual and facultative sexual group, irrespective of the rate of environmental deterioration. The results revealed significant interaction between mode of reproduction and the rate of environmental deterioration on extinction rate of experimental populations. Obligate sexual reproduction was advantageous under the intermediate rate of environmental deterioration, while facultative sexuality was favoured under the high rate of environmental deterioration. The populations within the obligate sexual group were most likely to adapt to grow in conditions lethal for the ancestral populations, irrespective of the rate of environmental deterioration.To the best of our knowledge, this is the first study which indicates that different modes of sexual reproduction will be beneficial (slower extinction rate) at different rates of environmental deterioration and that obligate sexuality maximizes the probability of adaptation irrespective of the rate of environmental deterioration.


Author(s):  
Madoka Muroishi ◽  
Akira Yakita

AbstractUsing a small, open, two-region economy model populated by two-period-lived overlapping generations, we analyze long-term agglomeration economy and congestion diseconomy effects of young worker concentration on migration and the overall fertility rate. When the migration-stability condition is satisfied, the distribution of young workers between regions is obtainable in each period for a predetermined population size. Results show that migration stability does not guarantee dynamic stability of the economy. The stationary population size stability depends on the model parameters and the initial population size. On a stable trajectory converging to the stationary equilibrium, the overall fertility rate might change non-monotonically with the population size of the economy because of interregional migration. In each period, interregional migration mitigates regional population changes caused by fertility differences on the stable path. Results show that the inter-regional migration-stability condition does not guarantee stability of the population dynamics of the economy.


2014 ◽  
Vol 104 (4) ◽  
pp. 418-431 ◽  
Author(s):  
M. Soufbaf ◽  
Y. Fathipour ◽  
J. Karimzadeh ◽  
M.P. Zalucki

AbstractTo understand the effect of plant availability/structure on the population size and dynamics of insects, a specialist herbivore in the presence of two of its parasitoids was studied in four replicated time-series experiments with high and low plant availabilities; under the latter condition, the herbivore suffered from some periods of resource limitation (starvation) and little plant-related structural refuges. Population dynamics of the parasitoid Cotesia vestalis was governed mainly by the delayed density-dependent process under both plant setups. The parasitoid, Diadegma semiclausum, under different plant availabilities and different coexistence situations (either +competitor or –competitor) showed dynamics patterns that were governed mainly by the delayed density process (significant lags at weeks 2–4). Both the competing parasitoids did not experience beneficial or costly interferences from each other in terms of their own population size when the plant resource was limited. Variation in the Plutella xylostella population under limited plant availability is higher than that under the other plant setup. For both parasitoids, under limited plant setup, the extinction risk was lower when parasitoids were engaged in competition, while under the unlimited plant setup, the mentioned risk was higher when parasitoids competed. In this situation, parasitoids suffered from two forces, competition and higher escaped hosts.


2016 ◽  
Author(s):  
Eleanor K. O’Brien ◽  
Megan Higgie ◽  
Alan Reynolds ◽  
Ary A. Hoffmann ◽  
Jon R. Bridle

ABSTRACTPredicting how species will respond to the rapid climatic changes predicted this century is an urgent task. Species Distribution Models (SDMs) use the current relationship between environmental variation and species’ abundances to predict the effect of future environmental change on their distributions. However, two common assumptions of SDMs are likely to be violated in many cases: (1) that the relationship of environment with abundance or fitness is constant throughout a species’ range and will remain so in future, and (2) that abiotic factors (e.g. temperature, humidity) determine species’ distributions. We test these assumptions by relating field abundance of the rainforest fruit fly Drosophila birchii to ecological change across gradients that include its low and high altitudinal limits. We then test how such ecological variation affects the fitness of 35 D. birchii families transplanted in 591 cages to sites along two altitudinal gradients, to determine whether genetic variation in fitness responses could facilitate future adaptation to environmental change. Overall, field abundance was highest at cooler, high altitude sites, and declined towards warmer, low altitude sites. By contrast, cage fitness (productivity) increased towards warmer, lower altitude sites, suggesting that biotic interactions (absent from cages) drive ecological limits at warmer margins. In addition, the relationship between environmental variation and abundance varied significantly among gradients, indicating divergence in ecological niche across the species’ range. However, there was no evidence for local adaptation within gradients, despite greater productivity of high altitude than low altitude populations when families were reared under laboratory conditions. Families also responded similarly to transplantation along gradients, providing no evidence for fitness trade-offs that would favour local adaptation. These findings highlight the importance of (1) measuring genetic variation of key traits under ecologically relevant conditions, and (2) considering the effect of biotic interactions when predicting species’ responses to environmental change.


2017 ◽  
Author(s):  
Mark A Linnell ◽  
Katie Moriarty ◽  
David S Green ◽  
Taal Levi

Pacific martens (Martes caurina) in coastal forests of Oregon and northern California in the United States are rare and geographically isolated, prompting a petition for listing under the Endangered Species Act. If listed, regulations have the potential to substantially influence land-use decisions and forestry on public and private lands, but no estimates of population size, density, and viability of remnant marten populations are available for evaluating their conservation status. We used GPS telemetry, territory mapping, and spatial mark-recapture to estimate population size and density within the current extent of Pacific martens in central Oregon, within coastal forest in the Oregon dunes national recreational area. We then estimated population viability at differing levels of human-caused mortality (e.g. roadkill). We estimated 63 adult martens (95% Credible Interval: 58-73) and 73 (range: 46-91) potential territories across two subpopulations separated by a large barrier (Umpqua River). Marten density was 1.02 per km2, the highest reported in North America. Using population viability analysis, extinction risk for a subpopulation of 30 martens ranged from 34% to 100% with two or more annual human-caused mortalities. Absent broad-scale restoration of forest to conditions which support marten populations, limiting human-caused mortalities would likely have the greatest conservation impact.


2017 ◽  
Vol 30 (10) ◽  
pp. 1872-1883 ◽  
Author(s):  
J. Lachapelle ◽  
N. Colegrave ◽  
G. Bell

Sign in / Sign up

Export Citation Format

Share Document