scholarly journals FIRST FRONTIER FIELD CONSTRAINTS ON THE COSMIC STAR FORMATION RATE DENSITY ATz∼ 10—THE IMPACT OF LENSING SHEAR ON COMPLETENESS OF HIGH-REDSHIFT GALAXY SAMPLES

2015 ◽  
Vol 808 (1) ◽  
pp. 104 ◽  
Author(s):  
P. A. Oesch ◽  
R. J. Bouwens ◽  
G. D. Illingworth ◽  
M. Franx ◽  
S. M. Ammons ◽  
...  
2020 ◽  
Vol 494 (4) ◽  
pp. 6053-6071 ◽  
Author(s):  
Sarah Appleby ◽  
Romeel Davé ◽  
Katarina Kraljic ◽  
Daniel Anglés-Alcázar ◽  
Desika Narayanan

ABSTRACT We study specific star formation rate (sSFR) and gas profiles of star-forming (SF) and green valley (GV) galaxies in the simba cosmological hydrodynamic simulation. SF galaxy half-light radii (Rhalf) at z = 0 and their evolution (∝(1 + z)−0.78) agree with observations. Passive galaxy Rhalf agree with observations at high redshift, but by z = 0 are too large, owing to numerical heating. We compare simbaz = 0 sSFR radial profiles for SF and GV galaxies to observations. simba shows strong central depressions in star formation rate (SFR), sSFR, and gas fraction in GV galaxies and massive SF systems, qualitatively as observed, owing to black hole X-ray feedback, which pushes central gas outwards. Turning off X-ray feedback leads to centrally peaked sSFR profiles as in other simulations. In conflict with observations, simba yields GV galaxies with strongly dropping sSFR profiles beyond ≳Rhalf, regardless of active galactic nucleus feedback. The central depression owes to lowering molecular gas content; the drop in the outskirts owes to reduced star formation efficiency. simba’s satellites have higher central sSFR and lower outskirts sSFR than centrals, in qualitative agreement with observations. At z = 2, simba does not show central depressions in massive SF galaxies, suggesting simba’s X-ray feedback should be more active at high-z. High-resolution tests indicate central sSFR suppression is not sensitive to numerical resolution. Reproducing the central sSFR depression in z = 0 GV galaxies represents a unique success of simba. The remaining discrepancies highlight the importance of SFR and gas profiles in constraining quenching mechanisms.


2019 ◽  
Vol 492 (2) ◽  
pp. 1706-1712
Author(s):  
Anton Vikaeus ◽  
Erik Zackrisson ◽  
Christian Binggeli

ABSTRACT The upcoming James Webb Space Telescope (JWST) will allow observations of high-redshift galaxies at fainter detection levels than ever before, and JWST surveys targeting gravitationally lensed fields are expected to bring z ≳ 6 objects with very low star formation rate (SFR) within reach of spectroscopic studies. As galaxies at lower and lower star formation activity are brought into view, many of the standard methods used in the analysis of integrated galaxy spectra are at some point bound to break down, due to violation of the assumptions of a well-sampled stellar initial mass function (IMF) and a slowly varying SFR. We argue that galaxies with SFR ∼ 0.1 M⊙ yr−1 are likely to turn up at the spectroscopic detection limit of JWST in lensed fields, and investigate to what extent star formation sampling may affect the spectral analysis of such objects. We use the slug spectral synthesis code to demonstrate that such effects are likely to have significant impacts on spectral diagnostics of, for example, the Balmer emission lines. These effects are found to stem primarily from SFRs varying rapidly on short (∼Myr) time-scales due to star formation in finite units (star clusters), whereas the effects of an undersampled IMF is deemed insignificant in comparison. In contrast, the ratio between the He ii- and H i-ionizing flux is found to be sensitive to IMF-sampling as well as ICMF-sampling (sampling of the initial cluster mass function), which may affect interpretations of galaxies containing Population III stars or other sources of hard ionizing radiation.


2019 ◽  
Vol 490 (2) ◽  
pp. 2855-2879 ◽  
Author(s):  
L Y Aaron Yung ◽  
Rachel S Somerville ◽  
Gergö Popping ◽  
Steven L Finkelstein ◽  
Harry C Ferguson ◽  
...  

ABSTRACT The long anticipated James Webb Space Telescope (JWST) will be able to directly detect large samples of galaxies at very high redshift. Using the well-established, computationally efficient Santa Cruz semi-analytic model, with recently implemented multiphase gas partitioning, and H2-based star formation recipes, we make predictions for a wide variety of galaxy properties for galaxy populations at z = 4–10. In this work, we provide forecasts for the physical properties of high-redshift galaxies and links to their photometric properties. With physical parameters calibrated only to z ∼ 0 observations, our model predictions are in good agreement with current observational constraints on stellar mass and star formation rate distribution functions up to z ∼ 8. We also provide predictions representing wide, deep, and lensed JWST survey configurations. We study the redshift evolution of key galaxy properties and the scaling relations among them. Taking advantage of our models’ high computational efficiency, we study the impact of systematically varying the model parameters. All distribution functions and scaling relations presented in this work are available at https://www.simonsfoundation.org/semi-analytic-forecasts-for-jwst/.


2019 ◽  
Vol 15 (S352) ◽  
pp. 194-198
Author(s):  
Christina C. Williams

AbstractWe discuss the serendipitous discovery of a dusty high-redshift galaxy in a small (8 arcmin2) ALMA 3-mm survey Williams et al. (2019). The galaxy was previously unknown and is absent from existing multi-wavelength catalogs (“ALMA-only”). Using the ALMA position as prior, we perform forced deblended photometry to constrain its spectral energy distribution. The spectral energy distribution is well described by a massive (M* = 1010.8 M⊙) and highly obscured (AV ∼ 4) galaxy at redshift z = 5.5 ± 1.1 with star formation rate ∼ 300 M⊙yr−1. Our small survey area implies an uncertain but large contribution to the cosmic star formation rate density, similar to the contribution from all ultraviolet-selected galaxies combined at this redshift. This galaxy likely traces an abundant population of massive galaxies absent from current samples of infrared-selected or sub-millimeter galaxies, but with larger space densities, higher duty cycles, and significant contribution to the cosmic star-formation rate and stellar mass densities.


2008 ◽  
Author(s):  
Dafne Guetta ◽  
Carlo Luciano Bianco ◽  
She-Sheng Xue

2016 ◽  
Vol 11 (S321) ◽  
pp. 279-279
Author(s):  
Mustafa K. Yıldız ◽  
Paolo Serra ◽  
Reynier F. Peletier ◽  
Tom A. Oosterloo ◽  
Pierre-Alain Duc

AbstractContextAccording to the ATLAS3D project, about 20 percent of all nearby early-type galaxies (D < 42 Mpc; MK < -21.5 mag; stellar mass Mstars ≳ 6 × 109 M⊙) outside clusters are surrounded by a disc or ring of low-column-density neutral hydrogen (Hi) gas with typical radii of tens of kpc, much larger than the stellar body.AimsOur aim is to understand the impact of these gas systems on the host galaxies, in particular, whether there is any recent star formation related to the Hi and effect of recent star formation on the host early-type galaxies.Methods and sampleWe analyse the distribution of star formation out to large radii by using resolved Hi images together with UV and optical images. We calculate the UV-UV and UV-optical colours in two apertures, 1-3 and 3-10 Reff. Using FUV emission as a proxy for star formation, we also estimate the integrated star formation rate in the outer regions. Our sample consists of 18 Hi-rich galaxies as well as 55 control galaxies where no Hi has been detected. We select the control sample galaxies to match the Hi-rich galaxies in stellar mass, environment, distance and stellar kinematics.ResultsIn half of the Hi-rich galaxies the radial UV profile changes slope at the position of the Hi radial profile peak. We find that the FUV-NUV and UV-optical colours in the first and second apertures of the Hi-rich galaxies are on average 0.5 and 0.8 mag bluer than the Hi-poor ones, respectively. We also find that the Hi-rich early-type galaxies have colour gradients that are almost 2 times stronger than the Hi-poor ones. we estimate the integrated star formation rate in the outer regions (R > 1 Reff) to be on average ~ 6.1×10−3 M⊙ yr−1 for the Hi-rich galaxies. We find that the gas depletion time in the outermost region (3-10 Reff) is ~ 80 Gyrs, which is similar to that estimated for the outskirts of spirals.ConclusionsStudying the stellar populations in early type galaxies with and without Hi, we find that galaxies with Hi generally show UV and UV-Optical colours in the outer parts that are bluer than those of early-type galaxies without Hi. This shows that the Hi is actively involved in recent star formation. The star formation rate in the outer regions is too low to build a stellar disc, and therefore change the morphology of the host even when integrated over several Gyrs. Star formation in outermost regions does not depend on the type of the galaxies.


2020 ◽  
Vol 640 ◽  
pp. A67
Author(s):  
O. B. Kauffmann ◽  
O. Le Fèvre ◽  
O. Ilbert ◽  
J. Chevallard ◽  
C. C. Williams ◽  
...  

We present a new prospective analysis of deep multi-band imaging with the James Webb Space Telescope (JWST). In this work, we investigate the recovery of high-redshift 5 <  z <  12 galaxies through extensive image simulations of accepted JWST programs, including the Early Release Science in the EGS field and the Guaranteed Time Observations in the HUDF. We introduced complete samples of ∼300 000 galaxies with stellar masses of log(M*/M⊙) > 6 and redshifts of 0 <  z <  15, as well as galactic stars, into realistic mock NIRCam, MIRI, and HST images to properly describe the impact of source blending. We extracted the photometry of the detected sources, as in real images, and estimated the physical properties of galaxies through spectral energy distribution fitting. We find that the photometric redshifts are primarily limited by the availability of blue-band and near-infrared medium-band imaging. The stellar masses and star formation rates are recovered within 0.25 and 0.3 dex, respectively, for galaxies with accurate photometric redshifts. Brown dwarfs contaminating the z >  5 galaxy samples can be reduced to < 0.01 arcmin−2 with a limited impact on galaxy completeness. We investigate multiple high-redshift galaxy selection techniques and find that the best compromise between completeness and purity at 5 <  z <  10 using the full redshift posterior probability distributions. In the EGS field, the galaxy completeness remains higher than 50% at magnitudes mUV <  27.5 and at all redshifts, and the purity is maintained above 80 and 60% at z ≤ 7 and 10, respectively. The faint-end slope of the galaxy UV luminosity function is recovered with a precision of 0.1–0.25, and the cosmic star formation rate density within 0.1 dex. We argue in favor of additional observing programs covering larger areas to better constrain the bright end.


2020 ◽  
Vol 499 (4) ◽  
pp. 5941-5959
Author(s):  
L du Buisson ◽  
P Marchant ◽  
Ph Podsiadlowski ◽  
C Kobayashi ◽  
F B Abdalla ◽  
...  

ABSTRACT During the first three observing runs of the Advanced gravitational-wave detector network, the LIGO/Virgo collaboration detected several black hole binary (BHBH) mergers. As the population of detected BHBH mergers grows, it will become possible to constrain different channels for their formation. Here we consider the chemically homogeneous evolution (CHE) channel in close binaries, by performing population synthesis simulations that combine realistic binary models with detailed cosmological calculations of the chemical and star-formation history of the Universe. This allows us to constrain population properties, as well as cosmological and aLIGO/aVirgo detection rates of BHBH mergers formed through this pathway. We predict a BHBH merger rate at redshift zero of $5.8 \textrm {Gpc}^{-3} \textrm {yr}^{-1}$ through the CHE channel, to be compared with aLIGO/aVirgo’s measured rate of ${53.2}_{-28.2}^{+55.8} \text{Gpc}^{-3}\text{yr}^{-1}$, and find that eventual merger systems have BH masses in the range $17{-}43 \,\textrm {M}_{\odot }$ below the pair-instability supernova (PISN) gap, and ${\gt}124 \textrm {M}_{\odot }$ above the PISN gap. We investigate effects of momentum kicks during black hole formation, and calculate cosmological and magnitude limited PISN rates. We also study the effects of high-redshift deviations in the star formation rate. We find that momentum kicks tend to increase delay times of BHBH systems, and our magnitude limited PISN rate estimates indicate that current deep surveys should be able to detect such events. Lastly, we find that our cosmological merger rate estimates change by at most ${\sim}8{{\ \rm per\ cent}}$ for mild deviations of the star formation rate in the early Universe, and by up to ${\sim}40\,\text{per cent}$ for extreme deviations.


Sign in / Sign up

Export Citation Format

Share Document