Designing room-temperature multiferroic materials in a single-phase solid-solution film

2016 ◽  
Vol 49 (36) ◽  
pp. 365001 ◽  
Author(s):  
H J Mao ◽  
C Song ◽  
B Cui ◽  
J J Peng ◽  
F Li ◽  
...  
2012 ◽  
Vol 77 ◽  
pp. 215-219
Author(s):  
Piotr Guzdek

Magnetoelectric effect in multiferroic materials is widely studied for its fundamental interest and practical applications. The magnetoelectric effect observed for single phase materials like Cr2O3, BiFeO3, Pb(Fe0.5Nb0.5)O3is usually small. A much larger effect can be obtained in composites consisting of magnetostrictive and piezoelectric phases. This paper investigates the magnetostrictive and magnetoelectric properties of nickel ferrite Ni0.3Zn0.62Cu0.08Fe2O4- relaxor Pb(Fe0.5Nb0.5)O3bulk composites. The magnetic properties of composites shows a dependence typical of such composite materials, i.e. it consists of a dominating signal from ferrimagnetic phase (ferrite) and a weak signal from paramagnetic (antiferromagnetic) phase (relaxors). Magnetoelectric effect at room temperature was investigated as a function of static magnetic field (300-7200 Oe) and frequency (10 Hz-10 kHz) of sinusoidal modulation magnetic field. The magnetoelectric effect increase slightly before reaching a maximum at HDC= 750 Oe and then decrease. The magnetoelectric coefficient increases continuously as frequency is raised, although this increase is less pronounced in the 1-10 kHz range.


2009 ◽  
Vol 1161 ◽  
Author(s):  
Marian Vopsaroiu ◽  
John Blackburn ◽  
Markys G. Cain

AbstractMultiferroic materials are recognized today as one of the new emerging technologies with huge potential for both academic research and commercial developments. Multiferroic composites are in particular more attractive for studies due to their enhanced properties, especially at room temperature, in comparison to the single-phase multiferroics. In this paper, we examine some of the theoretical aspects regarding one type of multiferroic composites (laminated structures) and we discuss one of the many possible applications of these exciting structures. We highlight the main advantages composite systems have over single-phase multiferroics and the similarities that exist between them.


2010 ◽  
Vol 97-101 ◽  
pp. 182-186
Author(s):  
Yu Ping Tong ◽  
Jing Wang ◽  
Rui Zhu Zhang ◽  
Shun Bo Zhao

Well-dispersed Nd1.6Eu0.4Zr2O7 solid solutions were successfully prepared by a convenient salt-assisted combustion process using glycine as fuel. The samples were characterized by XRD, Raman, TEM and HRTEM. The results showed that the Nd ion can be partially replaced by Eu ion. The substituted product was still single-phase solid solutions and the crystal form remained unchanged. TEM images showed that the Nd1.6Eu0.4Zr2O7 solid solutions were composed of well-dispersed sphere-shaped nanocrystals with an average size of 30 nm, which is consistent with the value obtained from XRD patterns using the Scherrer formula. Moreover, the fluorescent characterization of the Nd1.6Eu0.4Zr2O7 nanocrystals at 385 nm upon excitation was carried out at room temperature, and the results showed that there were some intense and prevailing emission peaks located at 590-650 nm.


1988 ◽  
Vol 3 (2) ◽  
pp. 392-397 ◽  
Author(s):  
Tadashi Endo ◽  
Naoki Morita ◽  
Tsugio Sato ◽  
Masahiko Shimada

The substitution of fluorine for oxygen in TiO2 was investigated by the reaction of Ti2O3, TiO2, and TiF3 under conditions of 4–6.5 GPa and 700–1400°C. The single phase of TiO2−x Fx solid solution was obtained in the region of 0≤x≤0.7. According to the x-ray diffraction data, the a and c axes of the rutile-type structure linearly increased with increasing fluorine content. The electrical resistivities of TiO2−x Fx were in the range from 10 Ω cm for x = 0.3 to 850 Ω cm for x = 0.7 at 300 K and the relationship between In ρ and 1000/T was linear. The activation energies were estimated to be from 0.17 eV at x = 0.3 to 0.28 eV at x = 0.7. Also, the thermoelectric powers at room temperature changed from 250μV/K to + 50 μV/K. The mechanism of electric conduction was discussed on the basis of the extended band model of rutile.


2020 ◽  
Vol 8 (45) ◽  
pp. 16168-16179
Author(s):  
Quentin Micard ◽  
Anna L. Pellegrino ◽  
Raffaella Lo Nigro ◽  
Ausrine Bartasyte ◽  
Guglielmo G. Condorelli ◽  
...  

Accurate control of the MOCVD process parameters results selectively and reproducibly in the formation of two different systems: a single-phase solid solution film and a nanocomposite sample formed by nanocolumns embedded in a solid solution film.


2018 ◽  
Vol 30 (17) ◽  
pp. 6156-6163 ◽  
Author(s):  
Guopeng Wang ◽  
Zezhi Chen ◽  
Hongchuan He ◽  
Dechao Meng ◽  
He Yang ◽  
...  

1994 ◽  
Vol 364 ◽  
Author(s):  
K. S. Kumar ◽  
P. M. Hazzledine

AbstractThree alloys, single-phase Cr2Hf, a two-phase alloy consisting of Cr solid solution and Cr2Hf, and a two-phase alloy consisting of Hf solid solution and Cr2Hf were cast and heat treated. The C14-to- C15 transformation of the Laves phase, Cr2Hf was studied as a function of heat treatment. According to the existing phase diagram, the Cr2Hf phase exhibits a C14 structure at elevated temperature but transforms to the C15 structure at lower temperatures. Such transformations are known to be extremely sluggish. In the present study, the Cr2Hf phase was found to retain the C14 structure at room temperature in all three compositions in the cast or cast and forged conditions; upon subsequent heat-treatment at various temperatures and time-at-temperatures, however, the C14 structure decomposes to a variety of higher order structures including the 16H, 10H, and 4H structures. These superstructures can be viewed as containing various percentages of the cubic and hexagonal stacking. The C15 structure was not observed for any of the conditions considered.


Author(s):  
Reiichi Chiba ◽  
Rin Kawaguchi ◽  
Kazuma Horie

Abstract We investigated the use of Pr1-xTbxO2-d (x=0.0-1.0) material for active layer in SOFC cathode. Pr1-xTbxO2-d (x=0.0-1.0) in single-phase fluorite structure were successfully synthesized. They are solid solution of Pr6O11 and Tb4O7. When the x is between 0.3 and 0.6, the phase transition between room temperature and 800oC were eliminated Coin cells with GDC electrolyte and Pr1-xTbxO2-d (x=0.0-1.0) active layer and LaNi0.6Fe0.4O3 (LNF) current collecting layer were made to clarify the effect of this active layer. The interface resistance of these cathodes was measured with an AC impedance method at 800oC. The cathodes withPr1-xTbxO2-d (for all composition) active layer performed better than that of reference cathode, which has no active layer (consisting only LNF layer).


2009 ◽  
Vol 105 (7) ◽  
pp. 07D919 ◽  
Author(s):  
Hanjong Paik ◽  
Hyung-Chul Kim ◽  
Kwangsoo No ◽  
Yong-Il Kim ◽  
David P. Cann ◽  
...  

2007 ◽  
Vol 90 (4) ◽  
pp. 042908 ◽  
Author(s):  
Hanjong Paik ◽  
Hosung Hwang ◽  
Kwangsoo No ◽  
Seunghwa Kwon ◽  
David P. Cann

Sign in / Sign up

Export Citation Format

Share Document