A simple volume ratio method for calibrating vacuum gauges

1980 ◽  
Vol 13 (3) ◽  
pp. 278-279 ◽  
Author(s):  
D B Prowse ◽  
W A Caw
Keyword(s):  
1988 ◽  
Vol 64 (1) ◽  
pp. 18-26 ◽  
Author(s):  
I. S. Alemdag

One method for estimating the volume of the merchantable portion of a tree stem is the volume ratio method. In this study the ratio used with this method was derived from another ratio expressed as ground-to-limit volume to total stem volume. Because of the latter ratio's strong correlation with the ratio of merchantable top diameter/breast height diameter and merchantable height/total tree height, several mathematical models were formed employing these variables for its estimation for red pine (Pinus resinosa Ait.) and sugar maple (Acer saccharum Marsh.). Among the models that were tested, the best for each variable was chosen by assessing its adequacy by the statistical measures of fit index and standard error of estimate. When checked against an independent set of data, these best models performed satisfactorily, with small overall biases. Furthermore, taper equations were derived from these ground-to-limit volume ratio equations.


2019 ◽  
Vol 275 ◽  
pp. 03005
Author(s):  
Min Yuan ◽  
Sheng Qiang ◽  
Minjie Hu ◽  
Yedong Zhang ◽  
Hongdan Wang

In the concrete pouring process of large pumping stations, the pile foundation plays an important role in supporting the upper structures, and also has a certain constraint on the concrete floor. In the numerical simulation calculation of construction period, to simplify the pre-processing, the volume ratio method is sometimes applied to regard the pile and surrounding soil foundation as the equivalent pile foundation, while the anisotropy of pile foundation is ignored, which will result in large calculation error of the horizontal stress of the concrete floor. Aiming at this problem, the anisotropy theory of materials is adopted in this paper to simulate the temperature field and stress field of the concrete floor both on non-equivalent pile foundation and equivalent pile foundation during construction period after compiling corresponding calculation program. The results show that when the ratio α of the horizontal elastic modulus to the vertical elastic modulus of equivalent pile foundation is about 1/20, the calculation result of the transversely isotropic equivalent pile foundation is approximately equal to the calculation result of the non-equivalent pile foundation (exact solution). It may provide some reference to similar engineering numerical simulation.


2020 ◽  
Vol 50 (2) ◽  
pp. 361-369
Author(s):  
Gautam Adusumilli ◽  
◽  
Joshua D. Kaggie ◽  
Simona D’Amore ◽  
Timothy M. Cox ◽  
...  

AbstractThe Erlenmeyer flask deformity is a common skeletal modeling deformity, but current classification systems are binary and may restrict its utility as a predictor of associated skeletal conditions. A quantifiable 3-point system of severity classification could improve its predictive potential in disease. Ratios were derived from volumes of regions of interests drawn in 50 Gaucher’s disease patients. ROIs were drawn from the distal physis to 2 cm proximal, 2 cm to 4 cm, and 4 cm to 6 cm. Width was also measured at each of these boundaries. Two readers rated these 100 femurs using a 3-point scale of severity classification. Weighted kappa indicated reliability and one-way analysis of variance characterized ratio differences across the severity scale. Accuracy analyses allowed determination of clinical cutoffs for each ratio. Pearson’s correlations assessed the associations of volume and width with a shape-based concavity metric of the femur. The volume ratio incorporating the metaphyseal region from 0 to 2 cm and the diametaphyseal region at 4–6 cm was most accurate at distinguishing femurs on the 3-point scale. Receiver operating characteristic curves for this ratio indicated areas of 0.95 to distinguish normal and mild femurs and 0.93 to distinguish mild and severe femurs. Volume was moderately associated with the degree of femur concavity. The proposed volume ratio method is an objective, proficient method at distinguishing severities of the Erlenmeyer flask deformity with the potential for automation. This may have application across diseases associated with the deformity and deficient osteoclast-mediated modeling of growing bone.


Author(s):  
R. Beeuwkes ◽  
A. Saubermann ◽  
P. Echlin ◽  
S. Churchill

Fifteen years ago, Hall described clearly the advantages of the thin section approach to biological x-ray microanalysis, and described clearly the ratio method for quantitive analysis in such preparations. In this now classic paper, he also made it clear that the ideal method of sample preparation would involve only freezing and sectioning at low temperature. Subsequently, Hall and his coworkers, as well as others, have applied themselves to the task of direct x-ray microanalysis of frozen sections. To achieve this goal, different methodological approachs have been developed as different groups sought solutions to a common group of technical problems. This report describes some of these problems and indicates the specific approaches and procedures developed by our group in order to overcome them. We acknowledge that the techniques evolved by our group are quite different from earlier approaches to cryomicrotomy and sample handling, hence the title of our paper. However, such departures from tradition have been based upon our attempt to apply basic physical principles to the processes involved. We feel we have demonstrated that such a break with tradition has valuable consequences.


Author(s):  
H. Mori ◽  
Y. Murata ◽  
H. Yoneyama ◽  
H. Fujita

Recently, a new sort of nano-composites has been prepared by incorporating such fine particles as metal oxide microcrystallites and organic polymers into the interlayer space of montmorillonite. Owing to their extremely large specific surface area, the nano-composites are finding wide application[1∼3]. However, the topographic features of the microstructures have not been elucidated as yet In the present work, the microstructures of iron oxide-pillared montmorillonite have been investigated by high-resolution transmission electron microscopy.Iron oxide-pillared montmorillonite was prepared through the procedure essentially the same as that reported by Yamanaka et al. Firstly, 0.125 M aqueous solution of trinuclear acetato-hydroxo iron(III) nitrate, [Fe3(OCOCH3)7 OH.2H2O]NO3, was prepared and then the solution was mixed with an aqueous suspension of 1 wt% clay by continuously stirring at 308 K. The final volume ratio of the latter aqueous solution to the former was 0.4. The clay used was sodium montmorillonite (Kunimine Industrial Co.), having a cation exchange capacity of 100 mequiv/100g. The montmorillonite in the mixed suspension was then centrifuged, followed by washing with deionized water. The washed samples were spread on glass plates, air dried, and then annealed at 673 K for 72 ks in air. The resultant film products were approximately 20 μm in thickness and brown in color.


1993 ◽  
Vol 32 (02) ◽  
pp. 175-179 ◽  
Author(s):  
B. Brambati ◽  
T. Chard ◽  
J. G. Grudzinskas ◽  
M. C. M. Macintosh

Abstract:The analysis of the clinical efficiency of a biochemical parameter in the prediction of chromosome anomalies is described, using a database of 475 cases including 30 abnormalities. A comparison was made of two different approaches to the statistical analysis: the use of Gaussian frequency distributions and likelihood ratios, and logistic regression. Both methods computed that for a 5% false-positive rate approximately 60% of anomalies are detected on the basis of maternal age and serum PAPP-A. The logistic regression analysis is appropriate where the outcome variable (chromosome anomaly) is binary and the detection rates refer to the original data only. The likelihood ratio method is used to predict the outcome in the general population. The latter method depends on the data or some transformation of the data fitting a known frequency distribution (Gaussian in this case). The precision of the predicted detection rates is limited by the small sample of abnormals (30 cases). Varying the means and standard deviations (to the limits of their 95% confidence intervals) of the fitted log Gaussian distributions resulted in a detection rate varying between 42% and 79% for a 5% false-positive rate. Thus, although the likelihood ratio method is potentially the better method in determining the usefulness of a test in the general population, larger numbers of abnormal cases are required to stabilise the means and standard deviations of the fitted log Gaussian distributions.


Sign in / Sign up

Export Citation Format

Share Document