scholarly journals Irreversible thermodynamics of dark energy on the entropy-corrected apparent horizon

2010 ◽  
Vol 82 (4) ◽  
pp. 045901 ◽  
Author(s):  
K Karami ◽  
M Jamil ◽  
N Sahraei
2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Merab Gogberashvili

In the action formalism variations of metric tensors usually are limited by the Hubble horizon. On the contrary, variations of quantum fields should be extended up to the event horizon, which is the real boundary of the spacetime. As a result the entanglement energy of quantum particles across the apparent horizon is missed in the cosmological equations written for the Hubble volume. We identify this missing boundary term with the dark energy density and express it (using the zero energy assumption for the finite universe) as the critical density multiplied by the ratio of the Hubble and event horizons radii.


2020 ◽  
Vol 35 (20) ◽  
pp. 2050166 ◽  
Author(s):  
A. Pourbagher ◽  
Alireza Amani

In this paper, we first obtain the energy density by the approach of the new agegraphic dark energy model, and then the [Formula: see text] gravity model is studied as an alternative to the dark energy in a viscous fluid by flat-FRW background, in which [Formula: see text] and [Formula: see text] are torsion scalar and boundary term. The Friedmann equations will be obtained in the framework of modified teleparallel gravity by tetrad components. We consider that the universe dominates with components such as matter and dark energy by an interacting model. The Hubble parameter is parameterized by the power-law for the scale factor, and then we fit the corresponding Hubble parameter with observational data constraints. The variation of the equation of state (EoS) for dark energy is plotted as a function of the redshift parameter, and the accelerated expansion of the universe is explored. In what follows, the stability of the model is also studied on the base of the sound speed parameter. Finally, the generalized second law of thermodynamics is investigated by entropies of inside and on the boundary of the apparent horizon in thermodynamics equilibrium.


2016 ◽  
Vol 25 (02) ◽  
pp. 1650018 ◽  
Author(s):  
A. Sheykhi ◽  
M. H. Dehghani ◽  
S. Ghaffari

The energy density of the holographic dark energy (HDE) is based on the area law of entropy, and thus any modification of the area law leads to a modified holographic energy density. Inspired by the entropy expression associated with the apparent horizon of a Friedmann–Robertson–Walker (FRW) universe in DGP braneworld, we propose a new model for the HDE in the framework of DGP brane cosmology. We investigate the cosmological consequences of this new model and calculate the equation of state (EoS) parameter by choosing the Hubble radius, [Formula: see text], as the system’s IR cutoff. Our study show that, due to the effects of the extra dimension (bulk), the identification of IR cutoff with Hubble radius, can reproduce the present acceleration of the universe expansion. This is in contrast to the ordinary HDE in standard cosmology which leads to the zero EoS parameter in the case of choosing the Hubble radius as system’s IR cutoff in the absence of interaction between dark matter (DM) and dark energy (DE).


2010 ◽  
Vol 19 (07) ◽  
pp. 1205-1215 ◽  
Author(s):  
M. R. SETARE ◽  
A. SHEYKHI

We examine the validity of the generalized second law of thermodynamics in a non-flat universe in the presence of viscous dark energy. First we assume that the universe is filled only with viscous dark energy. Then, we extend our study to the case where there is an interaction between viscous dark energy and pressureless dark matter. We examine the time evolution of the total entropy, including the entropy associated with the apparent horizon and the entropy of the viscous dark energy inside the apparent horizon. Our study shows that the generalized second law of thermodynamics is always protected in a universe filled with interacting viscous dark energy and dark matter in a region enclosed by the apparent horizon. Finally, we show that the the generalized second law of thermodynamics is fulfilled for a universe filled with interacting viscous dark energy and dark matter by taking into account the Casimir effect.


2013 ◽  
Vol 28 (17) ◽  
pp. 1350072 ◽  
Author(s):  
M. SHARIF ◽  
RABIA SALEEM

This paper is devoted to check the validity of laws of thermodynamics for Kaluza–Klein universe in the state of thermal equilibrium, composed of dark matter and dark energy. The generalized holographic dark energy and generalized Ricci dark energy models are considered here. It is proved that the first and generalized second law of thermodynamics are valid on the apparent horizon for both of these models. Further, we take a horizon of radius L with modified holographic or Ricci dark energy. We conclude that these models do not obey the first and generalized second law of thermodynamics on the horizon of fixed radius L for a specific range of model parameters.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ayesha Iqbal ◽  
Abdul Jawad

We investigate the validity of generalized second law of thermodynamics of a physical system comprising newly proposed dark energy model called Ricci-Gauss-Bonnet and cold dark matter enveloped by apparent horizon and event horizon in flat Friedmann-Robertson-Walker (FRW) universe. For this purpose, Bekenstein entropy, Renyi entropy, logarithmic entropy, and power law entropic corrections are used. It is found that this law exhibits the validity on both apparent and event horizons except for the case of logarithmic entropic correction at apparent horizon. Also, we check the thermodynamical equilibrium condition for all cases of entropy and found its vitality in all cases of entropy.


Author(s):  
H. Moradpour ◽  
A. H. Ziaie ◽  
M. Kord Zangeneh

Abstract Using Tsallis statistics and its relation with Boltzmann entropy, the Tsallis entropy content of black holes is achieved, a result in full agreement with a recent study (Mejrhit and Ennadifi in Phys Lett B 794:24, 2019). In addition, employing Kaniadakis statistics and its relation with that of Tsallis, the Kaniadakis entropy of black holes is obtained. The Sharma-Mittal and Rényi entropy contents of black holes are also addressed by employing their relations with Tsallis entropy. Thereinafter, relying on the holographic dark energy hypothesis and the obtained entropies, two new holographic dark energy models are introduced and their implications on the dynamics of a flat FRW universe are studied when there is also a pressureless fluid in background. In our setup, the apparent horizon is considered as the IR cutoff, and there is not any mutual interaction between the cosmic fluids. The results indicate that the obtained cosmological models have (i) notable powers to describe the cosmic evolution from the matter-dominated era to the current accelerating universe, and (ii) suitable predictions for the universe age.


2019 ◽  
Vol 28 (15) ◽  
pp. 1950164 ◽  
Author(s):  
Vipin Chandra Dubey ◽  
Umesh Kumar Sharma ◽  
A. Beesham

This paper investigates the Tsallis holographic dark energy (THDE) model in accordance with the apparent horizon as an infrared cut-off, in a non flat universe. The cosmological evolution of the deceleration parameter and equation of state of THDE model are calculated. The evolutionary trajectories are plotted for the THDE model for distinct values of the Tsallis parameter [Formula: see text] besides distinct spatial curvature contributions, in the statefinder [Formula: see text] parameter-pairs and [Formula: see text] plane, considering the present value of dark energy (DE) density parameter [Formula: see text], [Formula: see text], in the light of [Formula: see text] observational data. The statefinder and [Formula: see text] plane plots specify the feature of the THDE and demonstrate the separation between this framework and other models of DE.


Sign in / Sign up

Export Citation Format

Share Document