Fundamental Particle Physics

1969 ◽  
Vol 20 (12) ◽  
pp. 527-528
Author(s):  
E J Squires
2009 ◽  
Vol 24 (16n17) ◽  
pp. 2899-3037 ◽  
Author(s):  
MARC-ANDRÉ PLEIER

This review summarizes the program in the physics of the top quark being pursued at Fermilab's Tevatron proton–antiproton collider at a center-of-mass energy of 1.96 TeV. More than a decade after the discovery of the top quark at the two collider detectors CDF and D0, the Tevatron has been the only accelerator to produce top quarks and to study them directly.The Tevatron's increased luminosity and center-of-mass energy offer the possibility to scrutinize the properties of this heaviest fundamental particle through new measurements that were not feasible before, such as the first evidence for electroweak production of top quarks and the resulting direct constraints on the involved couplings. Better measurements of top quark properties provide more stringent tests of predictions from the SM of elementary particle physics. In particular, the improvement in measurements of the mass of the top quark, with the latest uncertainty of 0.7% marking the most precisely measured quark mass to date, further constrains the prediction of the mass of the still to be discovered Higgs boson.


1998 ◽  
Vol 13 (06) ◽  
pp. 863-886 ◽  
Author(s):  
FRANK WILCZEK

In the first part of the paper, I give a low-resolution overview of the current state of particle physics — the triumph of the Standard Model and its discontents. I review and re-endorse the remarkably direct and (to me) compelling argument that existing data, properly interpreted, point toward a unified theory of fundamental particle interactions and toward low-energy supersymmetry as the near-term future of high energy physics as a natural science. I then attempt, as requested, some more "visionary" — i.e. even lower resolution — comments about the farther future. In that spirit, I emphasize the continuing importance of condensed matter physics as a source of inspiration and potential application, in particular for expansion of symmetry concepts, and of cosmology as a source of problems, applications, and perhaps ultimately limitations.


1985 ◽  
Vol 19 (1) ◽  
pp. 121-138
Author(s):  
A. H. Gabriel ◽  
R. W. Nicholls ◽  
D. R. Johnson ◽  
S. L. Mandel’shtam ◽  
H. Nussbaumer ◽  
...  

As the pool of fundamental data available to astronomers continues to increase, the question of how best to promote the necessary cross-discipline interaction becomes increasingly important. Commission 14 has traditionally played an important role in this activity, by publishing triennial reports in the IAU Proceedings, as well as by responding to more specific requests for data. We are fortunate in having the support for these activities of some energetic Working-Groups and Chairmen, whos contributions to the present report are very gratefully acknowledged. With the expansion of available data it is appropriate that these reports take on more and more the form of references to review articles and other more specific data bases. The question of whether the field of activity of the Commission should be enlarged was discussed at Patras and will be reviewed again at the Delhi meeting. One possibility is to include nuclear processes and fundamental particle physics. On the other hand a rationale for limiting the scope of our activities might be the direct application to astronomical observations. Astronomical theorists are usually better placed to access the fundamental data themselves. The interaction between fundamental physics and astronomy will in general take two forms. There is the essential service role of making data available in a usable form. However, we should surely aim to stimulate the other very profitable mode, in which the two disciplines are brought together to form real scientific collaborations, in order to research the problems of astronomy.


Universe ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. 112
Author(s):  
Carl F. Diether III ◽  
Joy Christian

Two of the major open questions in particle physics are: (1) Why do the elementary fermionic particles that are so far observed have such low mass-energy compared to the Planck energy scale? (2) What mechanical energy may be counterbalancing the divergent electrostatic and strong force energies of point-like charged fermions in the vicinity of the Planck scale? In this paper, using a hitherto unrecognised mechanism derived from the non-linear amelioration of the Dirac equation known as the Hehl–Datta equation within the Einstein–Cartan–Sciama–Kibble (ECSK) extension of general relativity, we present detailed numerical estimates suggesting that the mechanical energy arising from the gravitationally coupled self-interaction in the ECSK theory can address both of these questions in tandem.


2015 ◽  
Vol 23 (1) ◽  
pp. 57-70
Author(s):  
Aleandro Nisati

The Large Hadron Collider (LHC) at CERN is the highest energy machine for particle physics research ever built. In the years 2010–2012 this accelerator has collided protons to a centre-mass-energy up to 8 TeV (note that 1 TeV corresponds to the energy of about 1000 protons at rest; the mass of one proton is about 1.67×10–24 g). The events delivered by the LHC have been collected and analysed by four apparatuses placed alongside this machine. The search for the Higgs boson predicted by the Standard Model and the search for new particles and fields beyond this theory represent the most important points of the scientific programme of the LHC. In July 2012, the international collaborations ATLAS and CMS, consisting of more than 3000 physicists, announced the discovery of a new neutral particle with a mass of about 125 GeV, whose physics properties are compatible, within present experimental and theoretical uncertainties, to the Higgs boson predicted by the Standard Model. This discovery represents a major milestone for particle physics, since it indicates that the hypothesized Higgs mechanism seems to be responsible for the masses of elementary particles, in particular W± and Z0 bosons, as well as fermions (leptons and quarks). The 2013 Physics Nobel Prize has been assigned to F. Englert and P. Higgs, ‘for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider’.


Sign in / Sign up

Export Citation Format

Share Document