Approximate approaches to the one-dimensional finite potential well

2011 ◽  
Vol 32 (6) ◽  
pp. 1701-1710 ◽  
Author(s):  
Shilpi Singh ◽  
Praveen Pathak ◽  
Vijay A Singh
2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


1985 ◽  
Vol 40 (4) ◽  
pp. 379-382 ◽  
Author(s):  
R. Baltin

For the one-dimensional potential well with finite height V0( V0 > 0 or V0 < 0) the exact Green's function G is calculated by solving the differential equation. The poles of G in the complex energy plane are shown to coincide with the solutions to the Schrödinger eigenvalue equation for this potential. The well-known Green's functions for the special cases of the free particle and of the particle in an infinitely high potential box are recovered.


Author(s):  
N.S. Fialko ◽  
M.M. Olshevets ◽  
V.D. Lakhno

The paper considers the problem of the distribution of a quantum particle in a classical one-dimensional lattice with a potential well. The cases of a rigid chain, a Holstein polaron model, and a polaron in a chain with temperature are investigated by direct modeling at fixed parameters. As is known, in the one-dimensional case, a particle is captured by an arbitrarily shallow potential well with an increase of the box size. In the case of a finite chain and finite temperatures, we have quite the opposite result, when a particle, being captured in a well in a short chain, turns into delocalized state with an increase in the chain length. These results may be helpful for further understanding of charge transfer in DNA, where oxoguanine can be considered as a potential well in the case of hole transfer when for excess electron transfer it is thymine dimer.


Author(s):  
John A. Adam

This chapter deals with the mathematics of ocean acoustics. A number of environmental factors affect the transmission of sound in the ocean, including the depth and configuration of the bottom, the sound velocity structure within the ocean, and the shape of the ocean surface. The depths in the ocean are distributed in a peculiar manner, and the solution of underwater-sound problems may be grouped into two categories that differ mainly in terms of dimension: the average depths of water for deep-water transmission are 10,000 to 20,000 feet, whereas those for shallow-water transmission are less than 300 feet. The chapter first provides an overview of ocean acoustic waveguides before discussing one-dimensional waves in an inhomogeneous medium. It also considers a mathematical model of acoustic wave propagation in a stratified fluid and concludes with an analysis of the one-dimensional time-independent Schrödinger equation for solving the potential well problem.


2020 ◽  
Vol 18 (1) ◽  
pp. 1413-1422
Author(s):  
Soon-Mo Jung ◽  
Ginkyu Choi

Abstract In Applied Mathematics Letters 74 (2017), 147–153, the Hyers-Ulam stability of the one-dimensional time-independent Schrödinger equation was investigated when the relevant system has a potential well of finite depth. As a continuous work, we prove in this paper a type of Hyers-Ulam stability of the one-dimensional time-independent Schrödinger equation with a rectangular potential barrier of {V}_{0} in height and 2c in width, where {V}_{0} is assumed to be greater than the energy E of the particle under consideration.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 44
Author(s):  
Kaushik Y. Bhagat ◽  
Baibhab Bose ◽  
Sayantan Choudhury ◽  
Satyaki Chowdhury ◽  
Rathindra N. Das ◽  
...  

The concept of the out-of-time-ordered correlation (OTOC) function is treated as a very strong theoretical probe of quantum randomness, using which one can study both chaotic and non-chaotic phenomena in the context of quantum statistical mechanics. In this paper, we define a general class of OTOC, which can perfectly capture quantum randomness phenomena in a better way. Further, we demonstrate an equivalent formalism of computation using a general time-independent Hamiltonian having well-defined eigenstate representation for integrable Supersymmetric quantum systems. We found that one needs to consider two new correlators apart from the usual one to have a complete quantum description. To visualize the impact of the given formalism, we consider the two well-known models, viz. Harmonic Oscillator and one-dimensional potential well within the framework of Supersymmetry. For the Harmonic Oscillator case, we obtain similar periodic time dependence but dissimilar parameter dependences compared to the results obtained from both micro-canonical and canonical ensembles in quantum mechanics without Supersymmetry. On the other hand, for the One-Dimensional Potential Well problem, we found significantly different time scales and the other parameter dependence compared to the results obtained from non-Supersymmetric quantum mechanics. Finally, to establish the consistency of the prescribed formalism in the classical limit, we demonstrate the phase space averaged version of the classical version of OTOCs from a model-independent Hamiltonian, along with the previously mentioned well-cited models.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1351
Author(s):  
Ginkyu Choi ◽  
Soon-Mo Jung

A type of Hyers–Ulam stability of the one-dimensional, time independent Schrödinger equation was recently investigated; the relevant system had a parabolic potential wall. As a continuation, we proved a type of Hyers–Ulam stability of the time independent Schrödinger equation under the action of a specific hyperbolic potential well. One of the advantages of this paper is that it proves a type of Hyers–Ulam stability of the Schrödinger equation under the condition that the potential function has singularities.


Sign in / Sign up

Export Citation Format

Share Document