A low-cost computer-controlled Arduino-based educational laboratory system for teaching the fundamentals of photovoltaic cells

2012 ◽  
Vol 33 (6) ◽  
pp. 1599-1610 ◽  
Author(s):  
K Zachariadou ◽  
K Yiasemides ◽  
N Trougkakos
Author(s):  
Afshin Amoorezaei ◽  
Sayed Ali Khajehoddin ◽  
Nasrin Rezaei ◽  
Kambiz Moez

2000 ◽  
Vol 63 (4) ◽  
pp. 367-374 ◽  
Author(s):  
R.N Bhattacharya ◽  
W Batchelor ◽  
K Ramanathan ◽  
M.A Contreras ◽  
T Moriarty
Keyword(s):  
Low Cost ◽  

2011 ◽  
Vol 1288 ◽  
Author(s):  
Khayankhyarvaa Sarangerel ◽  
Altantsetseg Delgerjargal ◽  
Byambasuren Delgertsetseg ◽  
Chimed Ganzorig

ABSTRACTOrganic thin film photovoltaic (PV) cells have attracted attention because of their ease of fabrication and potential for low cost production. In this paper, we study the effects of chemical modification of indium-tin-oxide (ITO) on the performance of organic PV cells. The organic PV cells are fabricated, with the cell configuration of ITO/copper phthalocyanine (CuPc) (20 nm)/fullerene (C60) (40 nm)/Al with and without bathocuproine (BCP) (10 nm) between C60 and Al. By the use of para-substituted benzenesulfonyl chlorides with different terminal groups of H- and Cl-, the energy offset at the ITO/CuPc interface is tuned widely depending upon the interface dipoles and thus the correlation between the change in the ITO work function and the performance of the PV cells by chemical modification is examined.


2014 ◽  
pp. 319-346
Author(s):  
Salahuddin Qazi ◽  
Farhan A. Qazi

Solar radiation is plentiful and a clean source of power. However, despite the first practical use of silicon based solar cell more than 50 years ago, it has not been exploited to its full potential due to the high cost of electrical conversion on a per Watt basis. Many new kinds of photovoltaic cells such as multi-junction solar cells dye –sensitized solar cells and organic solar cell incorporating element of nanotechnology have been proposed to increase the efficiency and reduce the cost. Nanotechnology, in the form of quantum dots, nanorods, nanotubes, and grapheme, has been shown to enhance absorption of sunlight, makes low cost flexible solar panels and increases the efficiency of photovoltaic cells. The chapter reviews the state of current photovoltaic cells and challenges it presents. It also discusses the use of nanotechnology in the application of photovoltaic cells and future research directions to improve the efficiency of solar cells and reduce the cost.


Author(s):  
Salahuddin Qazi ◽  
Farhan A. Qazi

Solar radiation is plentiful and a clean source of power. However, despite the first practical use of silicon based solar cell more than 50 years ago, it has not been exploited to its full potential due to the high cost of electrical conversion on a per Watt basis. Many new kinds of photovoltaic cells such as multi-junction solar cells dye –sensitized solar cells and organic solar cell incorporating element of nanotechnology have been proposed to increase the efficiency and reduce the cost. Nanotechnology, in the form of quantum dots, nanorods, nanotubes, and grapheme, has been shown to enhance absorption of sunlight, makes low cost flexible solar panels and increases the efficiency of photovoltaic cells. The chapter reviews the state of current photovoltaic cells and challenges it presents. It also discusses the use of nanotechnology in the application of photovoltaic cells and future research directions to improve the efficiency of solar cells and reduce the cost.


2019 ◽  
Vol 116 (20) ◽  
pp. 9735-9740 ◽  
Author(s):  
Tran Ngoc Huan ◽  
Daniel Alves Dalla Corte ◽  
Sarah Lamaison ◽  
Dilan Karapinar ◽  
Lukas Lutz ◽  
...  

Conversion of carbon dioxide into hydrocarbons using solar energy is an attractive strategy for storing such a renewable source of energy into the form of chemical energy (a fuel). This can be achieved in a system coupling a photovoltaic (PV) cell to an electrochemical cell (EC) for CO2 reduction. To be beneficial and applicable, such a system should use low-cost and easily processable photovoltaic cells and display minimal energy losses associated with the catalysts at the anode and cathode and with the electrolyzer device. In this work, we have considered all of these parameters altogether to set up a reference PV–EC system for CO2 reduction to hydrocarbons. By using the same original and efficient Cu-based catalysts at both electrodes of the electrolyzer, and by minimizing all possible energy losses associated with the electrolyzer device, we have achieved CO2 reduction to ethylene and ethane with a 21% energy efficiency. Coupled with a state-of-the-art, low-cost perovskite photovoltaic minimodule, this system reaches a 2.3% solar-to-hydrocarbon efficiency, setting a benchmark for an inexpensive all–earth-abundant PV–EC system.


1999 ◽  
Vol 122 (4) ◽  
pp. 766-772 ◽  
Author(s):  
Daniel F. Walczyk ◽  
Randy S. Longtin

Commercially-available reconfigurable fixtures, used for holding compliant sheet metal, composite and plastic parts during secondary machining operations, are extremely expensive and overly-complicated devices. A computer-controlled, reconfigurable fixturing device (RFD) concept for compliant parts, based on a matrix of individually-stoppable pins lowered by a single rigid platen, has been developed as a simple and low-cost design alternative to commercially-available devices. Two different approaches to stopping and clamping individual pins have been investigated: a combination electromagnet assist and gas springs compressed with a toggle mechanism, and a pneumatic clamp. Simple mechanical models have been developed for predicting the stopping and clamping performance of both designs including pin positioning accuracy, vertical load-carrying capacity of a pin, and deflection of a pin subjected to lateral loads. An RFD prototype, consisting of a single pin actuated by a servoed platen, has been designed, built and tested. It has demonstrated the feasibility of this new RFD design. [S1087-1357(00)02204-8]


Sign in / Sign up

Export Citation Format

Share Document