scholarly journals Low-cost high-efficiency system for solar-driven conversion of CO2 to hydrocarbons

2019 ◽  
Vol 116 (20) ◽  
pp. 9735-9740 ◽  
Author(s):  
Tran Ngoc Huan ◽  
Daniel Alves Dalla Corte ◽  
Sarah Lamaison ◽  
Dilan Karapinar ◽  
Lukas Lutz ◽  
...  

Conversion of carbon dioxide into hydrocarbons using solar energy is an attractive strategy for storing such a renewable source of energy into the form of chemical energy (a fuel). This can be achieved in a system coupling a photovoltaic (PV) cell to an electrochemical cell (EC) for CO2 reduction. To be beneficial and applicable, such a system should use low-cost and easily processable photovoltaic cells and display minimal energy losses associated with the catalysts at the anode and cathode and with the electrolyzer device. In this work, we have considered all of these parameters altogether to set up a reference PV–EC system for CO2 reduction to hydrocarbons. By using the same original and efficient Cu-based catalysts at both electrodes of the electrolyzer, and by minimizing all possible energy losses associated with the electrolyzer device, we have achieved CO2 reduction to ethylene and ethane with a 21% energy efficiency. Coupled with a state-of-the-art, low-cost perovskite photovoltaic minimodule, this system reaches a 2.3% solar-to-hydrocarbon efficiency, setting a benchmark for an inexpensive all–earth-abundant PV–EC system.

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Franco Cotana ◽  
Federico Rossi ◽  
Andrea Nicolini

Many researches showed that the cost of the energy produced by photovoltaic (PV) concentrators is strongly reduced with respect to flat panels, especially in those countries that have a high solar irradiation. The cost drop comes from the reduction of the expensive high-efficiency photovoltaic surface through the use of optical concentrators of the solar radiation. In this paper, an experimental innovative PV low-concentration system is analysed. Numerical simulations were performed to determine the possible reasons of energy losses in the prototype, primarily due to geometrical factors. In particular, the effect of the shadows produced from the mirrors on the prototype performances was analysed: shadows are often neglected in the design phase of such systems. The study demonstrates that shadows may affect the performances of a hypothetical optimized PV low-concentration system up to 15%. Finally, an economical evaluation was carried out comparing the proposed optimized system to a traditional flat PV panel.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3339 ◽  
Author(s):  
Alessandro Acquaviva ◽  
Stefan Skoog ◽  
Emma Grunditz ◽  
Torbjörn Thiringer

Tooth coil winding machines offer a low cost manufacturing process, high efficiency and high power density, making these attractive for traction applications. Using direct oil cooling in combination with tooth coil windings is an effective way of reaching higher power densities compared to an external cooling jacket. In this paper, the validation of the electromagnetic design for an automotive 600 V, 50 kW tooth coil winding traction machine is presented. The design process is a combination of an analytical sizing process and FEA optimization. It is shown that removing iron in the stator yoke for cooling channels does not affect electromagnetic performance significantly. In a previous publication, the machine is shown to be thermally capable of 25 A/mm 2 (105 Nm) continuously, and 35 A/mm 2 (140 Nm) during a 10 s peak with 6 l/min oil cooling. In this paper, inductance, torque and back EMF are measured and compared with FEA results showing very good agreement with the numerical design. Furthermore, the efficiency of the machine is validated by direct loss measurements, using a custom built calorimetric set-up in six operating points with an agreement within 0.9 units of percent between FEA and measured results.


2019 ◽  
Vol 48 (39) ◽  
pp. 14783-14791 ◽  
Author(s):  
Ran Chen ◽  
Yanhui Ao ◽  
Chao Wang ◽  
Peifang Wang

Considerable efforts have been directed towards constructing high-efficiency, earth-abundant and low-cost photocatalysts for hydrogen evolution under visible light irradiation.


2015 ◽  
Vol 3 (29) ◽  
pp. 15324-15330 ◽  
Author(s):  
Venkatesh Tunuguntla ◽  
Wei-Chao Chen ◽  
Pei-Hsuan Shih ◽  
Indrajit Shown ◽  
Yi-Rung Lin ◽  
...  

We are introducing a non-toxic solvent, 1,3-dimethyl-2-Imadazolidinone, for the preparation of CZTS ink and demonstrated 5.67% efficiency CZTS device.


2020 ◽  
Vol 8 (26) ◽  
pp. 13340-13350
Author(s):  
Yayun Pu ◽  
Matthew J. Lawrence ◽  
Veronica Celorrio ◽  
Qi Wang ◽  
Meng Gu ◽  
...  

Low cost, high-efficiency catalysts towards water splitting are urgently required to fulfil the increasing demand for energy.


2010 ◽  
Vol 132 (12) ◽  
pp. 56-56
Author(s):  
Christer Bjorqivst

This article presents an overview of H2-IGCC research project. This project focuses on developing gas turbine (GT) technology optimised for the next generation. The H2-IGCC project is coordinated by the Brussels-based European Turbine Network (ETN)—an association with members of all stakeholders across the GT technology development value chain. ETN promotes environmentally sound gas turbine technology with reliable and low-cost operation. The objective of the H2-IGCC project is to provide and demonstrate technical solutions for state-of-the-art, high-efficiency, low-emissions GT technology that can be employed to IGCC applications. More specifically, the goal is to enable combustion of undiluted hydrogen-rich syngas with low NOx emissions and also allowing for high fuel flexibility. The challenge is to operate a stable and controllable GT on hydrogen-rich syngas with emissions and processes similar to current state-of-the-art natural GT engines.


Nanomaterials ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Qianfan Jiang ◽  
Chengyu Ji ◽  
D. Riley ◽  
Fang Xie

Solar water splitting by semiconductor based photoanodes and photocathodes is one of the most promising strategies to convert solar energy to chemical energy to meet the high demand for energy consumption in modern society. However, the state-of-the-art efficiency is too low to fulfill the demand. To overcome this challenge and thus enable the industrial realization of a solar water splitting device, different approaches have been taken to enhance the overall device efficiency, one of which is the incorporation of plasmonic nanostructures. Photoanodes and photocathodes coupled to the optimized plasmonic nanostructures, matching the absorption wavelength of the semiconductors, can exhibit a significantly increased efficiency. So far, gold and silver have been extensively explored to plasmonically enhance water splitting efficiency, with disadvantages of high cost and low enhancement. Instead, non-noble plasmonic metals such as aluminum and copper, are earth-abundant and low cost. In this article, we review their potentials in photoelectrolysis, towards scalable applications.


Author(s):  
K.M. Hones ◽  
P. Sheldon ◽  
B.G. Yacobi ◽  
A. Mason

There is increasing interest in growing epitaxial GaAs on Si substrates. Such a device structure would allow low-cost substrates to be used for high-efficiency cascade- junction solar cells. However, high-defect densities may result from the large lattice mismatch (∼4%) between the GaAs epilayer and the silicon substrate. These defects can act as nonradiative recombination centers that can degrade the optical and electrical properties of the epitaxially grown GaAs. For this reason, it is important to optimize epilayer growth conditions in order to minimize resulting dislocation densities. The purpose of this paper is to provide an indication of the quality of the epitaxially grown GaAs layers by using transmission electron microscopy (TEM) to examine dislocation type and density as a function of various growth conditions. In this study an intermediate Ge layer was used to avoid nucleation difficulties observed for GaAs growth directly on Si substrates. GaAs/Ge epilayers were grown by molecular beam epitaxy (MBE) on Si substrates in a manner similar to that described previously.


1997 ◽  
Vol 503 ◽  
Author(s):  
B. K. Diefenderfer ◽  
I. L. Al-Qadi ◽  
J. J. Yoho ◽  
S. M. Riad ◽  
A. Loulizi

ABSTRACTPortland cement concrete (PCC) structures deteriorate with age and need to be maintained or replaced. Early detection of deterioration in PCC (e.g., alkali-silica reaction, freeze/thaw damage, or chloride presence) can lead to significant reductions in maintenance costs. However, it is often too late to perform low-cost preventative maintenance by the time deterioration becomes evident. By developing techniques that would enable civil engineers to evaluate PCC structures and detect deterioration at early stages (without causing further damage), optimization of life-cycle costs of the constructed facility and minimization of disturbance to the facility users can be achieved.Nondestructive evaluation (NDE) methods are potentially one of the most useful techniques ever developed for assessing constructed facilities. They are noninvasive and can be performed rapidly. Portland cement concrete can be nondestructively evaluated by electrically characterizing its complex dielectric constant. The real part of the dielectric constant depicts the velocity of electromagnetic waves in PCC. The imaginary part, termed the “loss factor,” describes the conductivity of PCC and the attenuation of electromagnetic waves.Dielectric properties of PCC have been investigated in a laboratory setting using a parallel plate capacitor operating in the frequency range of 0.1 to 40.1MIHz. This capacitor set-up consists of two horizontal-parallel plates with an adjustable separation for insertion of a dielectric specimen (PCC). While useful in research, this approach is not practical for field implementation. A new capacitor probe has been developed which consists of two plates, located within the same horizontal plane, for placement upon the specimen to be tested. Preliminary results show that this technique is feasible and results are promising; further testing and evaluation is currently underway.


Sign in / Sign up

Export Citation Format

Share Document