Electron scattering from Xe: the relation between the differential elastic cross section and shape and intensity of the energy loss spectra

2010 ◽  
Vol 43 (21) ◽  
pp. 215201 ◽  
Author(s):  
Maarten Vos
1987 ◽  
Vol 99 ◽  
Author(s):  
J. Ruvalds ◽  
Y. Ishu

ABSTRACTElectron energy loss measurements on superconducting oxides are correlated with an acoustic plasm on branch whose energy and width is highly sensitive to the alloy composition. Changing oxygen content reveals structure in the electron cross section which tracks the changes in the superconducting transition temperature.


2000 ◽  
Vol 53 (6) ◽  
pp. 785 ◽  
Author(s):  
Márcio H. F. Bettega

We report the integral elastic cross section for low-energy electron scattering by CS2 molecules. To perform our calculations we used the Schwinger multichannel method with pseudopotentials.We have found, in a static-exchange calculation, a shape resonance around 1 eV that belongs to the Π u symmetry.With the inclusion of polarisation effects only in that symmetry, we show that the resonance becomes a bound state. This result is in agreement with other results available in the literature.


1993 ◽  
Vol 02 (04) ◽  
pp. 845-854
Author(s):  
J.P. ADAMS ◽  
B. CASTEL

We present a review of theories presently available for describing quasi-elastic electron scattering in both longitudinal and transverse channels. It is argued that calculations that limit their domain to the effects of nuclear structure in a nonrelativistic regime are capable of reconciling theory and experiment in the region of the peak of the quasi-elastic cross-section and thus to a large degree abrogate the need to consider more complex processes.


2001 ◽  
Vol 7 (S2) ◽  
pp. 690-691
Author(s):  
Kenji Murata ◽  
Masaaki Yasuda ◽  
Syunji Yamauchi

Monte Carlo simulation of electron scattering has been widely used in various fields such as microanalysis, microscopy and microlithography. Various simulation models have been reported so far. in applications to quantitative x-ray microanalysis the accuracy of the model has been significantly improved by introducing the Mott cross section. However, in the analyses at low energies of an electron beam or at energies near the x-ray excitation energy, the simulation accuracy becomes worse. This is probably because the discrete energy loss process is not incorporated into the simulation model. to improve this default, we developed the model which includes the discrete energy loss process[l]. The outline of the model is described in the following.1)Elastic scatteringWe used the Mott cross section. The Mott cross sections for Al, Cu, Ag and Au elements are calculated at various energies. From this data base we obtain the differential elastic scattering cross section and the total elastic cross section for arbitarary elements and energies by using the interporation or the extrapolation.


2000 ◽  
Vol 33 (8) ◽  
pp. L309-L315 ◽  
Author(s):  
Hyuck Cho ◽  
Robert J Gulley ◽  
Stephen J Buckman

Author(s):  
J. Langmore ◽  
M. Isaacson ◽  
J. Wall ◽  
A. V. Crewe

High resolution dark field microscopy is becoming an important tool for the investigation of unstained and specifically stained biological molecules. Of primary consideration to the microscopist is the interpretation of image Intensities and the effects of radiation damage to the specimen. Ignoring inelastic scattering, the image intensity is directly related to the collected elastic scattering cross section, σɳ, which is the product of the total elastic cross section, σ and the eficiency of the microscope system at imaging these electrons, η. The number of potentially bond damaging events resulting from the beam exposure required to reduce the effect of quantum noise in the image to a given level is proportional to 1/η. We wish to compare η in three dark field systems.


Author(s):  
M. K. Lamvik ◽  
A. V. Crewe

If a molecule or atom of material has molecular weight A, the number density of such units is given by n=Nρ/A, where N is Avogadro's number and ρ is the mass density of the material. The amount of scattering from each unit can be written by assigning an imaginary cross-sectional area σ to each unit. If the current I0 is incident on a thin slice of material of thickness z and the current I remains unscattered, then the scattering cross-section σ is defined by I=IOnσz. For a specimen that is not thin, the definition must be applied to each imaginary thin slice and the result I/I0 =exp(-nσz) is obtained by integrating over the whole thickness. It is useful to separate the variable mass-thickness w=ρz from the other factors to yield I/I0 =exp(-sw), where s=Nσ/A is the scattering cross-section per unit mass.


Author(s):  
L. D. Peachey ◽  
J. P. Heath ◽  
G. Lamprecht

Biological specimens of cells and tissues generally are considerably thicker than ideal for high resolution transmission electron microscopy. Actual image resolution achieved is limited by chromatic aberration in the image forming electron lenses combined with significant energy loss in the electron beam due to inelastic scattering in the specimen. Increased accelerating voltages (HVEM, IVEM) have been used to reduce the adverse effects of chromatic aberration by decreasing the electron scattering cross-section of the elements in the specimen and by increasing the incident electron energy.


Sign in / Sign up

Export Citation Format

Share Document