scholarly journals Analysis of the dynamics of liquid aluminium: recurrent relation approach

2007 ◽  
Vol 19 (4) ◽  
pp. 046209 ◽  
Author(s):  
A V Mokshin ◽  
R M Yulmetyev ◽  
R M Khusnutdinoff ◽  
P Hänggi
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Franz Demmel ◽  
Louis Hennet ◽  
Noel Jakse

AbstractThe characteristic property of a liquid, discriminating it from a solid, is its fluidity, which can be expressed by a velocity field. The reaction of the velocity field on forces is enshrined in the transport parameter viscosity. In contrast, a solid reacts to forces elastically through a displacement field, the particles are trapped in their potential minimum. The flow in a liquid needs enough thermal energy to overcome the changing potential barriers, which is supported through a continuous rearrangement of surrounding particles. Cooling a liquid will decrease the fluidity of a particle and the mobility of the neighbouring particles, resulting in an increase of the viscosity until the system comes to an arrest. This process with a concomitant slowing down of collective particle rearrangements might already start deep inside the liquid state. The idea of the potential energy landscape provides an attractive picture for these dramatic changes. However, despite the appealing idea there is a scarcity of quantitative assessments, in particular, when it comes to experimental studies. Here we present results on a monatomic liquid metal through a combination of ab initio molecular dynamics, neutron spectroscopy and inelastic x-ray scattering. We investigated the collective dynamics of liquid aluminium to reveal the changes in dynamics when the high temperature liquid is cooled towards solidification. The results demonstrate the main signatures of the energy landscape picture, a reduction in the internal atomic structural energy, a transition to a stretched relaxation process and a deviation from the high-temperature Arrhenius behavior of the relaxation time. All changes occur in the same temperature range at about $$1.4 \cdot T_{melting}$$ 1.4 · T melting , which can be regarded as the temperature when the liquid aluminium enters the landscape influenced phase and enters a more viscous liquid state towards solidification. The similarity in dynamics with other monatomic liquid metals suggests a universal dynamic crossover above the melting point.


2001 ◽  
Vol 17 (10) ◽  
pp. 1293-1298 ◽  
Author(s):  
Y. Shen ◽  
W.F. Gale ◽  
J.W. Fergus ◽  
X. Wen

1993 ◽  
Vol 12 (4) ◽  
pp. 209-211 ◽  
Author(s):  
S. A. M. Foister ◽  
M. W. Johnston ◽  
J. A. Little

2017 ◽  
Vol 17 (3) ◽  
pp. 23-26 ◽  
Author(s):  
M. Brůna ◽  
D. Bolibruchová ◽  
R. Pastirčák

Abstract Pouring of liquid aluminium is typically accompanied by disturbance of the free surface. During these disturbances, the free surface oxide films can be entrained in the bulk of liquid, also pockets of air can be accidentally trapped in this oxide films. The resultant scattering of porosity in castings seems nearly always to originate from the pockets of entrained air in oxide films. Latest version of ProCast software allows to identify the amount of oxides formed at the free surface and where they are most likely to end-up in casts. During a filling calculation, ProCast can calculate different indicators which allow to better quantify the filling pattern. The fluid front tracking indicator “Free surface time exposure” has the units [cm2*s]. At each point of the free surface, the free surface area is multiplied by the time. This value is cumulated with the value of the previous timestep. In addition, this value is transported with the free surface and with the fluid flow. Experiments to validate this new functions were executed.


2015 ◽  
Vol 60 (4) ◽  
pp. 2887-2894 ◽  
Author(s):  
M. Saternus ◽  
T. Merder ◽  
J. Pieprzyca

URO-200 reactor belongs to batch reactors used in refining process of aluminium and its alloys in polish foundries. The appropriate level of hydrogen removal from liquid aluminium can be obtained when the mixing of inert gas bubbles with liquid metal is uniform. Thus, the important role is played by the following parameters: flow rate of refining gas, geometry of the impeller, rotary impeller speed. The article presents the results of research conducted on physical model of URO-200 reactor. The NaCl tracer was introduced to water (modelling liquid aluminium) and then the conductivity was measured. Basing on the obtained results the Residence Time Distribution (RTD) curves were determined. The measurements were carried out for two different rotary impellers, flow rate equaled 5, 10, 15 and 20 dm3/min and rotary impeller speed from 250 to 400 rpm every 50 rpm.


2016 ◽  
Vol 18 (26) ◽  
pp. 17461-17469 ◽  
Author(s):  
Z. Y. Hou ◽  
K. J. Dong ◽  
Z. A. Tian ◽  
R. S. Liu ◽  
Z. Wang ◽  
...  

The effect of the cooling rate on the solidification process of liquid aluminium is studied using a large-scale molecular dynamics method.


2001 ◽  
Vol 18 (4) ◽  
pp. 495-497 ◽  
Author(s):  
Li Hui ◽  
Wang Guang-Hou ◽  
Bian Xiu-Fang ◽  
Zhang Lin

2011 ◽  
Vol 19 (1) ◽  
pp. 35-53 ◽  
Author(s):  
Ming-Shi Chen ◽  
Chen-Cheng Lin ◽  
Yuan-Yeuan Tai ◽  
Ming-Chyuan Lin

Sign in / Sign up

Export Citation Format

Share Document