The use of bisfuroic acid derivatives in the curing of bismaleimides

1994 ◽  
Vol 6 (3) ◽  
pp. 249-256 ◽  
Author(s):  
D G Hawthorne ◽  
J H Hodgkin ◽  
M B Jackson ◽  
T C Morton

The use of 2,2-bis(4-[(2-carboxy-5-furyl)oxy]phenyl)propane as a Diels-Alder based co-reactant for curing bismaleimides was investigated. Differential scanning calorimetry and thermal gravimetric analysis were used to study the thermal behaviour of this reactant on its own and in the presence of 1,1'-(4methylene-4,1-phenylene)bismaleimide. The range of products formed under different cure conditions was determined by vFnR spectroscopy. The DMTA characteristics and thermal stability of cured laminates made from this resin system have been investigated. It is concluded that the thermal stability and other properties of laminates made from this system are only comparable to those of a typical commercial bismaleimide system.

2017 ◽  
Vol 264 ◽  
pp. 116-119 ◽  
Author(s):  
Zulhelmi Alif Abdul Halim ◽  
Muhamad Azizi Mat Yajid ◽  
Mohd Hasbullah Idris ◽  
Halimaton Hamdan

Thermal degradation of the composite blend consisting unsaturated polyester resin, alumina trihydrate and silica aerogel was studied using thermal gravimetric analysis. Composite filled with silica aerogel show lower density and slightly improve the thermal stability of the pure polymer. The addition of alumina trihydrate slows down the degradation of the polymer due to the release of bond water while the combination of silica aerogel and alumina trihydrate in polyester matrix does not interrupt the function of alumina trihydrate due to inert properties of silica aerogel.


2003 ◽  
Vol 767 ◽  
Author(s):  
A. Tregub ◽  
G. Ng ◽  
M. Moinpour

AbstractSoak of polyurethane-based CMP pads in tungsten slurry and de-ionized water and its effect on retention of thermal and mechanical properties of the pads was studied using Dynamic Mechanical Analysis (DMA), Thermal Mechanical Analysis (TMA), Thermal Gravimetric Analysis (TGA), and Modulated Differential Scanning Calorimetry (MDSC). Simultaneous cross-linking and plastisizing due to soak were established using DMA and MDSC analysis. The stable operating temperature range and its dependence on soak time were determined using TMA analysis. Substantial difference in diffusion behavior of the “soft” and “hard” pads was discovered: diffusion into the hard pads followed Fickian law [1], while diffusion into the multi-layer soft pads was dominated by the fast filling of the highly porous pad surface with liquid.During a traditional CMP process, which involves application of polishing pads and slurry, the pad properties can be substantially and irreversibly changed as the result of slurry/rinse water absorption.The retention of the pad properties after exposure was monitored using such thermal and mechanical techniques, as Thermal Mechanical Analysis (TMA), Dynamical Mechanical Analysis (DMA), Modulated Differential Scanning Calorimetry (MDSC), Thermal Gravimetric Analysis (TGA).


2020 ◽  
Vol 17 (35) ◽  
pp. 437-448
Author(s):  
Ahmed Jadah FARHAN

Composites are multi-phase materials that have superior engineering properties; the combination of their constituent phases achieves these properties. Nanoparticle-reinforced polymeric composites (NPCs) are new types of composites that have attracted a lot of attention recently and rapidly emerging as a multidisciplinary research activity whose results could widen the applications of polymers to the benefit of many different industries. The aim of research to analyze the effect of adding different percentages (10, 20, and 30%) of silica nanoparticles into unsaturated polyester (UPE) and identification of the thermal stability and decomposition kinetics for them. In this research, the nanocomposites were prepared from unsaturated polyester (UPE) mixed with different percentages (10, 20, and 30%) of silica nanoparticles. Thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves were obtained from the thermal degradation computed by using the Coats-Redfern. The kinetic and thermodynamic parameters were studied for all specimens were presented an excellent linear correlation coefficient close to unity using Minitab 16. Experimental work was showed that the degradation of composites obtained from the thermal gravimetric analysis was slower than the pure UPE. The enhancement of thermal stability was attributed to silica content. Also, the result showed that the decomposition under the oxidative environment for the pure UPE was much faster than the inert environment.


2020 ◽  
Vol 28 (2) ◽  
pp. 83-86
Author(s):  
A. O. Diachenko ◽  
D. V. Volynets ◽  
M. P. Trubitsyn ◽  
M. D. Volnianskii

The glasses of lithium-sodium tetragermanate LiNaGe4O9 and solid solution Li1.8Na0.2Ge4O9 were prepared by quenching the melt and crystallized on heating. The glass crystallization was controlled by differential scanning calorimetry and thermal gravimetric analysis. The DSC measurements performed in the range 300–1200 K show that the crystallization of the glasses occurs through a single stage. There are no anomalies on TGA dependences. It is assumed that LiNaGe4O9 and Li 1.8Na0.2Ge4O9 glasses crystallize in accordance with a polymorphic mechanism.


2017 ◽  
Vol 24 (2) ◽  
pp. 237-243 ◽  
Author(s):  
Varun Mittal ◽  
Shishir Sinha

AbstractThe present paper deals with a study of the thermal properties of bagasse fiber (BF)-reinforced epoxy composites. BFs are subjected to untreated and chemical treatments with 1% sodium hydroxide followed by 1% acrylic acid at ambient temperature before the composites are made. The thermal stability of the components was studied by thermogravimetric analysis and differential scanning calorimetry, as well as by differential thermal gravimetric analysis. Thermal analysis results of untreated BF-reinforced epoxy composite were compared with treated BF-reinforced epoxy composite. The chemical treatment of BF induces reasonable changes in the thermal stability of the polymer composites.


2014 ◽  
Vol 627 ◽  
pp. 12-17
Author(s):  
Britto Satheesh ◽  
Kim Yeow Tshai ◽  
Nick Warrior

This paper investigates the effects of polysaccharide additive agent on the morphological and thermal properties of thermosetting polymer. The weight percentage (wt%) of Diglycidyl Ether of Bisphenol A (DGEBA) epoxy resin to Hexamethylenediamine (HMDA) hardener were kept constant while a varyingwt% of chitosan, ranging from 0 to 10wt% was introduced. The chitosan filled epoxy hardener mixture was allowed to cure at 40°C for a period of 12 hours. Dynamic Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA) were conducted on the specimens to analyse the effects of chitosan loading on thermal stability and transition temperature while Atomic Force Microscopy (AFM) was used to investigate the changes to its morphological property. At chitosan loading of 2.5wt% and below, good dispersion of the additive was observed. Apparent agglomeration and phase separation were formed when chitosan content increases above 7.5wt%. The formation of bulky chitosan agglomeration was found capable of enhancing the thermal stability of the thermoset polymer. The diamine acted as the co-reactants with DGEBA as well as spacer which decrease the effect of material brittleness due to addition of chitosan.


2018 ◽  
Vol 71 (6) ◽  
pp. 449 ◽  
Author(s):  
Fu-Rong Zeng ◽  
Qi-Lin Zhu ◽  
Zi-Long Li

Post-polymerization modification is a facile and efficient method for the generation of diverse functional polymers. Herein, polymer-based molecular arrays were obtained by using sequential modification. First, periodic polyketone P0 was synthesized via acyclic diene metathesis (ADMET) polymerization of α,ω-diene M0. Oxime chemistry was employed in the functionalization of the ketone moieties of P0 using three commercially available alkoxyamine hydrochlorides. Finally, electrophilic alkoxyetherification, a four-component reaction, was employed in the modification of alkene groups on polymer main chains using N-bromosuccinimide (NBS), tetrahydrofuran, and fluorinated carboxylic acid. Complete conversion of reactive sites was observed in both steps, and the two modification reactions exhibited excellent compatibility. The thermal properties of the polymers as thermal stability, and glass transition and melting behaviours were investigated by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC).


2013 ◽  
Vol 634-638 ◽  
pp. 2307-2310
Author(s):  
Shiuh Chuan Her ◽  
Chun Yu Lai

The effect of functionalization of multi-walled carbon nanotubes (MWCNT) on the thermal stbility of MWCNT/epoxy nanocomposites was investigated. Epoxy-based nanocomposites reinforced with MWCNTs with and without functionalization were prepared. The thermal stability of nanocomposites was characterized using thermal gravimetric analysis (TGA). Experimental results showed that functionalization of MWCNTs enhanced the decomposition temperature of MWCNTs reinforced nanocomposite compared to those containing pristine MWCNTs.


1994 ◽  
Vol 6 (1) ◽  
pp. 35-41
Author(s):  
P N Prestont ◽  
V K Shaht ◽  
S W Simpsont ◽  
I Soutar ◽  
N J Stewart

New bismaleimides have been synthesised from diamines derived from benzophenone, 1,2-diphenylethane, 1,4-diphenylbutane, 2, 3-diphenylquinoxaline and 2, 3-diphenylnaphtho[2, 3-b]pyrazine. Cure profiles have been established by both differential scanning calorimetry (Dsc) and dynamic mechanical thermal analysis (DMTA). Cured resins prepared from the bismaleimide monomers were studied by thermal gravimetric analysis (TGA) with all materials exhibiting good thermal and thermo-oxidative stability.


Sign in / Sign up

Export Citation Format

Share Document