New Polymer Syntheses IV. Synthesis and Characterization of New Polyamides Containing Bis-Benzthiazolyl Sulphone Units in the Main Chain

1996 ◽  
Vol 8 (2) ◽  
pp. 307-314 ◽  
Author(s):  
Kamal I Aly ◽  
Maymona M Kandeel

Bis(2-aminobenzthiazolyl) sulphone (BABS) was used as a new starting material for preparing polyamides. These polyamides were prepared by reacting BABS with adipoyl, sebacoyl, isophthaloyl and terephthaloyl dichlorides, and also with 4,4′-azodibenzoyl chloride or 3,3′-azodibenzoyl chloride, utilizing the solution polycondensation technique at low temperature. In addition, the model compound was synthesized by condensing the BABS with benzoyl chloride. Characterization of the monomer, model compound and the polyamides was accomplished by 1H NMR, IR and elemental analyses. The polyamides had reduced viscosities of 0.25–0.63 dI/g in DMF or DMSO at 25 °C. All the polymers dissolved readily at room temperature in polar aprotic solvents. The thermal stability of the polymers was evaluated by TGA and DSC measurements.

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Nayef S. Al-Muaikel

A new type of unsaturated polyketones and copolyketones having cycloheptanone moiety in a p-conjugated main chain were synthesized via Friedel-Crafts reaction through the polymerization of the monomer: 2,7-bis furfurylidene cycloheptanoneIwith different diacid chlorides. The model compound was synthesized by reactingIwith benzoyl chloride and characterized by1H-NMR, IR, and elemental analyses. The polyketones and copolyketones were soluble easily in protic solvents like H2SO4and trifluoroacetic acid. The thermal properties of these polyketones and copolyketones were evaluated and correlated to their structural units by TGA and DSC measurements. The crystallinity of some polymers was tested by X-ray analyses; also the morphological properties of selected examples of poly and copolyketones were detected by SEM. All the polyketones were tested for their biological activity against bacteria, fungi, and yeast. It was observed that the majority of the polyketones and its copolymers synthesized can be used as antibacterial and antifungal agents.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Mona Ahmed Abdel-Rahman ◽  
Mahmoud Ali Hussein ◽  
Kamal Ibrahim Aly ◽  
Abdelwareth Abdel-Haleam Sarhan

A new interesting category of higher thermally stable polyazomethines containing ferrocene in the polymers main chain6a–e  was synthesized by solution-polycondensation reaction of 1-(m-formylphenyl)-1′-(5-formyl-2-methoxyphenyl)-ferrocene monomer4with different aliphatic and aromatic diamines. A model compound5was synthesized from dialdehyde monomer4with aniline and was characterized by elemental and spectral analyses. The desirable resulting polymers were characterized by elemental and spectral analyses, in addition to solubility measurement using different solvents. The thermal properties of these polymers were evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) measurements. The redox behaviours were studied for the ferrocene polymers in comparison with both the parent ferrocene monomer and the model compound by using cyclic voltammetry (CV).


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Evelyn Carolina Martínez Ceballos ◽  
Ricardo Vera Graziano ◽  
Gonzalo Martínez Barrera ◽  
Oscar Olea Mejía

Poly(dichlorophosphazene) was prepared by melt ring-opening polymerization of the hexachlorocyclotriphosphazene. Poly[bis(2-hydroxyethyl-methacrylate)-phosphazene] and poly[(2-hydroxyethyl-methacrylate)-graft-poly(lactic-acid)-phosphazene] were obtained by nucleophilic condensation reactions at different concentrations of the substituents. The properties of the synthesized copolymers were assessed by FTIR,1H-NMR and31P-NMR, thermal analysis (DSC-TGA), and electron microscopy (SEM). The copolymers have a block structure and show twoTg's below room temperature. They are stable up to a temperature of 100°C. The type of the substituents attached to the PZ backbone determines the morphology of the polymers.


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Saeed Zahmatkesh ◽  
Abdol Reza Hajipour

AbstractPyromellitic dianhydride (1) was reacted with L-leucine (2) to result in [N,N'-(pyromellitoyl)-bis-L-leucine diacid] (3). This compound (3) was converted to N,N'-(pyromellitoyl)-bis-L-leucine diacid chloride (4) by reaction with thionyl chloride. The microwave-assisted polycondensation of this diacid chloride (4) with polyethyleneglycol-diol (PEG-200) and/or three synthetic bisphenols furnish a series of new PEIs and Co-PEIs in a laboratory microwave oven (Milestone). The resulting polymers and copolymers have inherent viscosities in the range of 0.31- 0.53 dl g-1. These polymers are optically active, thermally stable and soluble in polar aprotic solvents such as DMF, DMSO, NMP, DMAc and sulfuric acid. All of the above polymers were fully characterized by IR spectroscopy, 1H NMR spectroscopy, elemental analyses, specific rotation and thermal analyses. Some structural characterizations and physical properties of these optically active PEIs and Co-PEIs are reported.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Amal Amin ◽  
Moshera Samy

Different polyesteramides hyperbranched polymers (HPEA1-6)/montomorillonite clay (MMT) nanocomposites were prepared with three different loading contents of clay (4, 10, and 15 wt%). The obtained nanocomposites were characterized via XRD, thermal analyses, and TEM. Generally, intercalation behavior was observed. The hyperbranched polyesteramides (HPEA1-6) were originally prepared by the bulky reaction between maleic anhydride (MAn), succinic anhydride (ScAn), and phthalic anhydride (PhAn) with either diethanolamine (DEA) or diisopropanolamine (DiPA). The resulting hyperbranched polyesteramides (HPEA1-6) were characterized by GPC, IR,1H-NMR, TGA, and DSC.


2018 ◽  
Vol 9 (1) ◽  
pp. 39-49 ◽  
Author(s):  
Sharifah Nurul Ain Syed Hashim ◽  
Sarani Zakaria ◽  
Chin Hua Chia ◽  
Sharifah Nabihah Syed Jaafar

In this study, soda alkali lignin from oil palm empty fruit bunch (EFB-AL) and kenaf core (KC-AL) are esterified with maleic anhydride under two different conditions, namely i) pyridine at temperature of 120°C for 3h and ii) aqueous alkaline solution at room temperature for 4h. As a result, the weight percentage gain (WPG) of the esterified EFB-AL (EFB-EL) and esterified KC-AL (KC-EL) in pyridine demonstrated a higher compared to aqueous alkaline solution. The FT-IR results of EFB-EL and KC-EL in both solvents exhibited some changes at the carbonyl and hydroxyl groups. Furthermore, the esterification process induced the carboxylic peak to appear in both alkali lignin samples. The outcome is confirmed by conducting H-NMR analysis, which demonstrated ester and carboxylic acid peaks within the spectral analysis. Finally, the TGA results showed both EFB-EL and KC-EL that are exposed to aqueous alkaline actually possessed better thermal stability and higher activation energy (Ea) compared to the esterified samples in pyridine.


e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Benhong Yang ◽  
Meng Li ◽  
Yun Wu ◽  
Kang Wang

AbstractSeveral inorganic/organic nanocomposites were prepared via solution-blending of cage-like octahexyl-polyhedral oligomeric silsesquioxane (Oh-POSS) with polystyrene (PS) in THF solvent. FTIR and 29Si-NMR were employed to characterize the structures of the nanocomposites. SEM pictures showed that the sample films were smooth and no POSS aggregation was observed when POSS content was lower than 1.0 wt%. TGA and DSC were used to investigate the thermal property. The results showed that the incorporation of nanosized Oh-POSS enhanced the thermal stability of PS with low POSS content. When 1.0 wt% of Oh-POSS was incorporated into PS matrix, the Tg and Td increased by 7.7 °C and 8.2 °C, respectively. However, higher POSS contents (>1.0 wt%) would deteriorate the thermal property of the nanocomposites due to the severe congregation of POSS..


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Md. Hasan Zahir

Reaction of Ce3+with p-tert-butylcalix[n]arene (n=4,6,8) yields purple crystalline complexes structurally as [Ce(p-tert-butylcalix[4]arene-3H)2(NO3)(DMF)x](2 −x)DMF (1), [Ce(p-tert-butylcalix[6]arene-4H)2(NO3)(DMF)x](3 −x)DMF (2), and [Ce(p-tert-butylcalix[8]arene-7H)2(NO3)(DMF)6] (3), whereDMF=N,N-dimethylformamide. The properties and coordination characteristics of the three calixarene complexes were determined by elemental analyses, electronic absorption, X-ray absorption spectroscopy (EXAFS), TG-DTA, FT-IR, SEM, and1H-NMR spectroscopy. The effect of various organic solvents on complexes1,2, and3has been discussed based on results from electronic absorption spectra. The polar protic solvents showed the most significant molar extinction coefficients in comparison with those of nonpolar and polar aprotic solvents. The Ce3+ions in the complexes are proved to combine with the ligand phenolic groups, oxygen atoms of DMF molecules, and/or OH−ions.


2001 ◽  
Vol 665 ◽  
Author(s):  
Zhi-Kuan Chen ◽  
Nancy Hoi Sim Lee ◽  
Wei Huang

ABSTRACTWe report the synthesis and characterization of a novel series of aryl-substituted PPVs, which have shown excellent processability, good thermal stability, high photoluminescence quantum efficiency and low content of structural defects. The substituents of the polymers were designed with different degree of hindrance effect on the main chain. 1H NMR measurement indicates that the defect structure in the polymer main chain can be effectively depressed by introducing bulk and hindrance substituents.


2012 ◽  
Vol 560-561 ◽  
pp. 174-178
Author(s):  
Yan Zou ◽  
Hui Min Qi ◽  
Mei Ling Xu ◽  
Fa Rong Huang ◽  
Lei Du

Hyperbranched poly(diethynylbenzene-silane) (hb-PDEBS) was synthesized through polycondensation reaction of diethynylbenzene Grignard reagent (A2) and trichlorosilane (B3), and its structure was characterized by FT-IR, 1H-NMR, GPC and Elemental Analysis. The degree of branching of hb-PDEBS was defined by 29Si-NMR and calculated to be about 0.68. The curing behavior of hb-PDEBS was investigated by DSC. Thermal stability of cured hb-PDEBS was examined by TGA, and its residue at 1000°C under nitrogen was 80.6%. Hb-PDEBS displayed a strong absorption due to π-π* transition and exhibited the most intensity structured emission with a maximum around 500 nm.


Sign in / Sign up

Export Citation Format

Share Document