scholarly journals Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling

2016 ◽  
Vol 27 (43) ◽  
pp. 435404 ◽  
Author(s):  
Yang Chen ◽  
Pyry Kivisaari ◽  
Mats-Erik Pistol ◽  
Nicklas Anttu
2008 ◽  
Vol 1101 ◽  
Author(s):  
Chang-Wei Liu ◽  
Zingway Pei ◽  
Shu-Tong Chang ◽  
Ren-Yui Ho ◽  
Min-Wei Ho ◽  
...  

AbstractOne of the parameters that limit the efficiency of a thin film solar cell, especially the a-Si and the nc-Si solar cell is the cell thickness. Although thicker film can absorb most of the sun light, the optical generated carriers will recombination through the numerous gap states in the film that obtained lower short circuit current and fill factor. In the controversy, thinner film could not absorb enough sun light that also limit the short circuit current. In this works, we utilize nanowire structure to solve the conflict between the light absorption and the carrier transport. The designed structure has ZnO:Al nanowire array on the substrate. The p-i-n a-Si solar cell structure is grown along the surface of each ZnO: Al nanowire sequentially. Under sunlight illumination, the light is absorbed in the axis direction of the nanowire. However, the carrier transport is along the radial direction of the solar cell. Therefore, the long nanowire could absorb most of the solar light. In the mean time, the thickness of the solar cell still is thin enough for photo-generated carrier transport. The dependence of short circuit current, open circuit voltage and fill factor to the length, diameter and density of ZnO:Al nanowires were simulated.


2011 ◽  
Vol 1305 ◽  
Author(s):  
Xiaobing Xie ◽  
Xiangbo Zeng ◽  
Wenjie Yao ◽  
Ping Yang ◽  
Shiyong Liu ◽  
...  

ABSTRACTWe made an amorphous-silicon (a-Si) solar cell with a nanowire-array structure on stainless steel(SS) by plasma enhanced chemical vapor (PECVD) deposition. This nanowire structure has an n-type Si nanowire array in which a-Si intrinsic layer and p type layer are sequentially grown on the surface of the nanowire. The highest open-circuit voltage (Voc) and short-circuit current density (Jsc) for AM 1.5 illumination were 620 mV and 13.4 mA/cm2, respectively at a maximum power conversion efficiency of 3.57%.


2021 ◽  
Author(s):  
adnen melliti

Abstract We present an optical simulation of a solar cell employing core (Si) /shell (CZTS or/and CZTSe) vertically-aligned nanowire array. The method of the simulation is rigorous coupled wave analysis. In the first stage, we studied the case where the shell is composed of only CZTS or CZTSe. A larger absorption of CZTSe led to a larger value of the ideal short circuit current (41 mA/cm2) in the case of CZTSe solar cell than in the case of CZTS solar cell (24 mA/cm2). In the second stage, to avoid the heat losses in CZTSe solar cell without reducing the current, we proposed a shell composed of a 3µm of CZTS in the upper part and a 6µm of CZTSe in the lower part. The maximum ideal current value in this structure is almost twice as large as that of a planar solar cell with the same amounts of used materials.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3797 ◽  
Author(s):  
Syed Abdul Moiz ◽  
A. N. M. Alahmadi ◽  
Abdulah Jeza Aljohani

Among various photovoltaic devices, the poly 3, 4-ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS) and silicon nanowire (SiNW)-based hybrid solar cell is getting momentum for the next generation solar cell. Although, the power-conversion efficiency of the PEDOT:PSS–SiNW hybrid solar cell has already been reported above 13% by many researchers, it is still at a primitive stage and requires comprehensive research and developments. When SiNWs interact with conjugate polymer PEDOT:PSS, the various aspects of SiNW array are required to optimize for high efficiency hybrid solar cell. Therefore, the designing of silicon nanowire (SiNW) array is a crucial aspect for an efficient PEDOT:PSS–SiNW hybrid solar cell, where PEDOT:PSS plays a role as a conductor with an transparent optical window just-like as metal-semiconductor Schottky solar cell. This short review mainly focuses on the current research trends for the general, electrical, optical and photovoltaic design issues associated with SiNW array for PEDOT:PSS–SiNW hybrid solar cells. The foremost features including the morphology, surface traps, doping of SiNW, which limit the efficiency of the PEDOT:PSS–SiNW hybrid solar cell, will be addressed and reviewed. Finally, the SiNW design issues for boosting up the fill-factor, short-circuit current and open-circuit voltage will be highlighted and discussed.


2020 ◽  
Vol 16 (4) ◽  
pp. 556-567
Author(s):  
Asma Khalil ◽  
Zubair Ahmad ◽  
Farid Touati ◽  
Mohamed Masmoudi

Background: The photo-absorption and light trapping through the different layers of the organic solar cell structures are a growing concern now-a-days as it affects dramatically the overall efficiency of the cells. In fact, selecting the right material combination is a key factor in increasing the efficiency in the layers. In addition to good absorption properties, insertion of nanostructures has been proved in recent researches to affect significantly the light trapping inside the organic solar cell. All these factors are determined to expand the absorption spectrum and tailor it to a wider spectrum. Objective: The purpose of this investigation is to explore the consequence of the incorporation of the Ag nanostructures, with different sizes and structures, on the photo absorption of the organic BHJ thin films. Methods: Through a three-dimensional Maxwell solver software, Lumerical FDTD, a simulation and comparison of the optical absorption of the three famous organic materials blends poly(3- hexylthiophene): phenyl C71 butyric acid methyl ester (P3HT:PCBM), poly[N-9″-heptadecanyl-2,7- carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDTBT:PCBM) and poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt- 4,7-(2,1,3-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDPDTBT:PCBM) has been conducted. Furthermore, FDTD simulation study of the incorporation of nanoparticles structures with different sizes, in different locations and concentrations through a bulk heterojunction organic solar cell structure has also been performed. Results: It has been demonstrated that embedding nanostructures in different locations of the cell, specifically in the active layer and the hole transporting layer had a considerable effect of widening the absorption spectrum and increasing the short circuit current. The effect of incorporation the nanostructures in the active layer has been proved to be greater than in the HTL. Furthermore, the comparison results showed that, PCDTBT:PCBM is no more advantageous over P3HT:PCBM and PCPDTBT:PCBM, and P3HT:PCBM took the lead and showed better performance in terms of absorption spectrum and short circuit current value. Conclusion: This work revealed the significant effect of size, location and concentration of the Ag nanostructures while incorporated in the organic solar cell. In fact, embedding nanostructures in the solar cell widen the absorption spectrum and increases the short circuit current, this result has been proven to be significant only when the nanostructures are inserted in the active layer following specific dimensions and structures.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5986
Author(s):  
Tao Chen ◽  
Hao Guo ◽  
Leiming Yu ◽  
Tao Sun ◽  
Anran Chen ◽  
...  

Si/PEDOT: PSS solar cell is an optional photovoltaic device owing to its promising high photovoltaic conversion efficiency (PCE) and economic manufacture process. In this work, dopamine@graphene was firstly introduced between the silicon substrate and PEDOT:PSS film for Si/PEDOT: PSS solar cell. The dopamine@graphene was proved to be effective in improving the PCE, and the influence of mechanical properties of dopamine@graphene on solar cell performance was revealed. When dopamine@graphene was incorporated into the cell preparation, the antireflection ability of the cell was enhanced within the wavelength range of 300~450 and 650~1100 nm. The enhanced antireflection ability would benefit amount of the photon-generated carriers. The electrochemical impedance spectra test revealed that the introduction of dopamine@graphene could facilitate the separation of carriers and improve the junction quality. Thus, the short-circuit current density and fill factor were both promoted, which led to the improved PCE. Meanwhile, the influence of graphene concentration on device performances was also investigated. The photovoltaic conversion efficiency would be promoted from 11.06% to 13.15% when dopamine@graphene solution with concentration 1.5 mg/mL was applied. The achievements of this study showed that the dopamine@graphene composites could be an useful materials for high-performance Si/PEDOT:PSS solar cells.


2021 ◽  
pp. 100783
Author(s):  
Christopher Rosiles-Perez ◽  
Sirak Sidhik ◽  
Luis Ixtilico-Cortés ◽  
Fernando Robles-Montes ◽  
Tzarara López-Luke ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sangho Kim ◽  
Thanh Thuy Trinh ◽  
Jinjoo Park ◽  
Duy Phong Pham ◽  
Sunhwa Lee ◽  
...  

AbstractWe developed and designed a bifacial four-terminal perovskite (PVK)/crystalline silicon (c-Si) heterojunction (HJ) tandem solar cell configuration albedo reflection in which the c-Si HJ bottom sub-cell absorbs the solar spectrum from both the front and rear sides (reflected light from the background such as green grass, white sand, red brick, roofing shingle, snow, etc.). Using the albedo reflection and the subsequent short-circuit current density, the conversion efficiency of the PVK-filtered c-Si HJ bottom sub-cell was improved regardless of the PVK top sub-cell properties. This approach achieved a conversion efficiency exceeding 30%, which is higher than those of both the top and bottom sub-cells. Notably, this efficiency is also greater than the Schockley–Quiesser limit of the c-Si solar cell (approximately 29.43%). The proposed approach has the potential to lower industrial solar cell production costs in the near future.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 726
Author(s):  
Ray-Hua Horng ◽  
Yu-Cheng Kao ◽  
Apoorva Sood ◽  
Po-Liang Liu ◽  
Wei-Cheng Wang ◽  
...  

In this study, a mechanical stacking technique has been used to bond together the GaInP/GaAs and poly-silicon (Si) solar wafers. A GaInP/GaAs/poly-Si triple-junction solar cell has mechanically stacked using a low-temperature bonding process which involves micro metal In balls on a metal line using a high-optical-transmission spin-coated glue material. Current–voltage measurements of the GaInP/GaAs/poly-Si triple-junction solar cells have carried out at room temperature both in the dark and under 1 sun with 100 mW/cm2 power density using a solar simulator. The GaInP/GaAs/poly-Si triple-junction solar cell has reached an efficiency of 24.5% with an open-circuit voltage of 2.68 V, a short-circuit current density of 12.39 mA/cm2, and a fill-factor of 73.8%. This study demonstrates a great potential for the low-temperature micro-metal-ball mechanical stacking technique to achieve high conversion efficiency for solar cells with three or more junctions.


Sign in / Sign up

Export Citation Format

Share Document