Corrugated aluminum nitride energy harvesters for high energy conversion effectiveness

2011 ◽  
Vol 21 (8) ◽  
pp. 085037 ◽  
Author(s):  
Ting-Ta Yen ◽  
Taku Hirasawa ◽  
Paul K Wright ◽  
Albert P Pisano ◽  
Liwei Lin
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1346
Author(s):  
Quan Wang ◽  
Kyung-Bum Kim ◽  
Sang Bum Woo ◽  
Tae Hyun Sung

This article presents a high-performance lead-free piezoelectric energy harvester (LPEH) system for magnetic field. It based on a Ba0.85Ca0.15Ti0.90Zr0.10O3 + CuO 0.3 wt% (BCTZC0.3) composite was fabricated by sintering at 1450 °C. The BCTZC0.3 composite, which has an enhanced high energy conversion constant (), shows improved piezoelectric power-generation performance when compared with conventional piezoelectric energy harvesters. The BCTZC0.3-based LPEH produces instantaneous maximum power of 8.2 mW and an energy density of 107.9 mW/cm3 in a weak magnetic field of 250 μT. This system can be used to charge a capacitor and operate a wireless sensor network (WSN) system to provide temperature sensing and radio-frequency (RF) transmission in a 250 μT magnetic field. The proposed LPEH is a promising green-energy device for potentially self-powering WSN systems when applied.


Author(s):  
Jiahua Wang ◽  
Bao Zhao ◽  
Junrui Liang ◽  
Wei-Hsin Liao

Abstract Nonlinear energy harvesters have been widely studied in the last decade. Their broad bandwidth and relatively high power output contribute to energy harvesting applications. However, the coexisting multiple orbits brought by the nonlinearity weaken the performance of nonlinear energy harvesters. This paper proposes to achieve orbit jumps of monostable energy harvesters by a bidirectional energy conversion circuit. Changing the switch control sequence in the bidirectional energy conversion circuit facilitates it with both the energy harvesting and vibration exciting functions. Thus, a nonlinear energy harvester in connection with the circuit can harness ambient energy as well as excite itself, through energy harvesting and vibration exciting modes separately. Based on the concept of vibration exciting, the energy saved in the storage is used to stimulate the piezoelectric transducer for a larger vibration amplitude, which enables orbit jumps. The working mechanism of the circuit is introduced. Experimental setup of a monostable energy harvester has been developed to validate the proposed method. The monostable system can be stimulated to high-energy orbit from a small vibration amplitude by the vibration exciting mode of the circuit. It is also revealed that the method can achieve orbit jumps in a wide frequency range within the hysteresis area. Evaluations on energy consumption and energy gain show that the sacrificed energy can be quickly recovered. A novel approach for orbit jumps of monostable energy harvesters is performed so as to open new opportunities for monostable energy harvesters.


2020 ◽  
Vol 8 (46) ◽  
pp. 24284-24306
Author(s):  
Xuefeng Ren ◽  
Yiran Wang ◽  
Anmin Liu ◽  
Zhihong Zhang ◽  
Qianyuan Lv ◽  
...  

Fuel cell is an electrochemical device, which can directly convert the chemical energy of fuel into electric energy, without heat process, not limited by Carnot cycle, high energy conversion efficiency, no noise and pollution.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 303
Author(s):  
Lingdi Tang ◽  
Shouqi Yuan ◽  
Yue Tang ◽  
Zhijun Gao

The impulse water turbine is a promising energy conversion device that can be used as mechanical power or a micro hydro generator, and its application can effectively ease the current energy crisis. This paper aims to clarify the mechanism of liquid acting on runner blades, the hydraulic performance, and energy conversion characteristics in the runner domain of an impulse water turbine with a splitter blade by using experimental tests and numerical simulations. The runner was divided into seven areas along the flow direction, and the power variation in the runner domain was analyzed to reflect its energy conversion characteristics. The obtained results indicate that the critical area of the runner for doing the work is in the front half of the blades, while the rear area of the blades does relatively little work and even consumes the mechanical energy of the runner to produce negative work. The high energy area is concentrated in the flow passage facing the nozzle. The energy is gradually evenly distributed from the runner inlet to the runner outlet, and the negative energy caused by flow separation with high probability is gradually reduced. The clarification of the energy conversion performance is of great significance to improve the design of impulse water turbines.


2016 ◽  
Vol 307 ◽  
pp. 435-442 ◽  
Author(s):  
Xiulin Fan ◽  
Yujie Zhu ◽  
Chao Luo ◽  
Tao Gao ◽  
Liumin Suo ◽  
...  

Nano Letters ◽  
2010 ◽  
Vol 10 (2) ◽  
pp. 726-731 ◽  
Author(s):  
Chieh Chang ◽  
Van H. Tran ◽  
Junbo Wang ◽  
Yiin-Kuen Fuh ◽  
Liwei Lin

2018 ◽  
Vol 20 (1) ◽  
pp. 53 ◽  
Author(s):  
Dilip Sundaram

The metal-water system is attractive for propulsion and energy-conversion applications. Of all metals, aluminum is attractive due to its high energy density, relative safety, and low cost. Experimental studies provide new insight on the combustion and propulsive behaviors. The burning rate is found to be a strong function of both pressure and particle size. Furthermore, there is a wide scatter in the measured pressure exponents due to differences in particle size, pressure, pH, and equivalence ratio. A major problem with Al/H2O mixtures is incomplete combustion and poor impulses, thereby rendering Al/H2O mixtures unsuitable for practical applications. Efforts to improve the performance of Al/H2O mixtures have only met with moderate success. Although experiments have revealed these new trends, not much is offered in terms of the underlying physics and mechanisms. To explore the combustion mechanisms, theoretical models based on energy balance analysis have been developed. These models involve numerous assumptions and many complexities were either ignored or treated simplistically. The model also relies on empirical inputs, which makes it more a useful guide than a predictive tool. Future works must endeavor to conduct a more rigorous analysis of metal-water combustion. Empirical inputs should be avoided and complexities must be properly treated to capture the essential physics of the problem. The model should help us properly understand the experimental trends, offer realistic predictions for unexplored conditions, and suggest guidelines and solutions in order to realize the full potential of metal-water mixtures.


Sign in / Sign up

Export Citation Format

Share Document