Slip flow through a converging microchannel: experiments and 3D simulations

2015 ◽  
Vol 25 (2) ◽  
pp. 025015 ◽  
Author(s):  
Vijay Varade ◽  
Amit Agrawal ◽  
A M Pradeep
2018 ◽  
Vol 388 ◽  
pp. 135-145
Author(s):  
Samuel Olumide Adesanya ◽  
L. Rundora ◽  
R.S. Lebelo ◽  
K.C. Moloi

In this work, the convective flow of heat generating hydromagnetic fluid through a leaky channel is investigated. Due to channel porosity, the asymmetrical slip conditions are imposed on both walls. The coupled dimensionless partial differential equations are reduced to a system of second-order boundary-value problems based on some flow assumptions and solved by Adomian decomposition method (ADM). Variations in velocity and temperature profiles are presented and discussed in detail. The result of the analysis revealed that increasing Hartmann number decreases the flow velocity while the slip parameters enhance the flow.


2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Anthony J. Gannon ◽  
Garth V. Hobson ◽  
Michael J. Shea ◽  
Christopher S. Clay ◽  
Knox T. Millsaps

This study forms part of a program to develop a micro-electro-mechanical systems (MEMS) scale turbomachinery based vacuum pump and investigates the roughing portion of such a system. Such a machine would have many radial stages with the exhaust stages operating near atmospheric conditions while the inlet stages operate at near vacuum conditions. In low vacuum such as those to the inlet of a roughing pump, the flow can still be treated as a continuum; however, the no-slip boundary condition is not accurate. The Knudsen number becomes a dominant nondimensional parameter in these machines due to their small size and low pressures. As the Knudsen number increases, slip-flow becomes present at the walls. The study begins with a basic overview on implementing the slip wall boundary condition in a commercial code by specifying the wall shear stress based on the mean-free-path of the gas molecules. This is validated against an available micro-Poiseuille classical solution at Knudsen numbers between 0.001 and 0.1 with reasonable agreement found. The method of specifying the wall shear stress is then applied to a generic MEMS scale roughing pump stage that consists of two stators and a rotor operating at a nominal absolute pressure of 500 Pa. The zero flow case was simulated in all cases as the pump down time for these machines is small due to the small volume being evacuated. Initial transient two-dimensional (2D) simulations are used to evaluate three boundary conditions, classical no-slip, specified-shear, and slip-flow. It is found that the stage pressure rise increased as the flow began to slip at the walls. In addition, it was found that at lower pressures the pure slip boundary condition resulted in very similar predictions to the specified-shear simulations. As the specified-shear simulations are computationally expensive it is reasonable to use slip-flow boundary conditions. This approach was used to perform three-dimensional (3D) simulations of the stage. Again the stage pressure increased when slip-flow was present compared with the classical no-slip boundaries. A characteristic of MEMS scale turbomachinery are the large relative tip gaps requiring 3D simulations. A tip gap sensitivity study was performed and it was found that when no-slip boundaries were present the pressure ratio increased significantly with decreasing tip gap. When slip-flow boundaries were present, this relationship was far weaker.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Javaria Farooq ◽  
Muhammad Mushtaq ◽  
Shahzad Munir ◽  
M. Ramzan ◽  
Jae Dong Chung ◽  
...  

2019 ◽  
Vol 15 (3) ◽  
pp. 673-684 ◽  
Author(s):  
Abiodun O. Ajibade ◽  
Jeremiah Jerry Gambo

Purpose The purpose of this paper is to analyze magnetohydrodynamics fully developed natural convection heat-generating/absorbing slip flow through a porous medium. Adomian decomposition method was applied to find the solutions to the problem. Design/methodology/approach In this study, Adomian decomposition method was used. Findings Results show that heat generation parameter enhanced the temperature and velocity of the fluid in the annulus. Moreover, slip effect parameter increases the velocity of the fluid. Originality/value Originality is in the application of Adomian decomposition method which allowed the slip at interface.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
R. S. Alassar

A solution of the problem of Poiseuille slip flow through an eccentric cylindrical annulus is obtained in bipolar coordinates. The solution is in excellent agreement with the two published limiting cases of slip flow through concentric annuli and no-slip flow through eccentric annuli. It is shown that for a fixed aspect ratio, fully eccentric channels sustain the maximum average velocity (flow rate) under the same pressure gradient and slip conditions. For a given channel geometry, the average velocity varies linearly with Knudsen number except for small aspect ratio. It is also shown that the extrema of the friction factor Reynolds number product is determined by how this product is defined or scaled.


2015 ◽  
Vol 60 ◽  
pp. 284-289 ◽  
Author(s):  
Vijay Varade ◽  
Amit Agrawal ◽  
S.V. Prabhu ◽  
A.M. Pradeep

Author(s):  
Lotfi Grine ◽  
Abdel-Hakim Bouzid

In recent years, few experimental and theoretical studies have been conducted to predict gas leak rate through gaskets. However a very limited work is done on liquid leak rates through gaskets. A new method based on a slip flow model to predict liquid flow through nano-porous gaskets is presented. A recent study [1] had shown that the leakage prediction based on the porosity parameter approach was successful in predicting gaseous leaks and an extrapolation of the latter to liquid leaks is the purpose of this study. In the present article, an analytical-computational methodology based on the number and pore size to predict liquid nanoflow in the slip flow regime through gaskets is presented. The formulation is based on the Navier-Stokes equations associated to slip boundary condition at the wall. The mass leak rates through a gasket considered as a porous media under variable experimentally conditions of (fluid media, pressure, and gasket stress) were conducted on a test bench. Gaseous and liquid leaks are measured and comparisons are made with the analytical predictions.


Sign in / Sign up

Export Citation Format

Share Document