Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles

1992 ◽  
Vol 1 (1) ◽  
pp. 91-94 ◽  
Author(s):  
M Shahinpoor
Robotica ◽  
1990 ◽  
Vol 8 (4) ◽  
pp. 347-353
Author(s):  
Tarek M. Abdel-Rahman ◽  
M.A. Elbestawi

SUMMARYThis paper addresses the conceptual design of direct-drive manipulators which have good promise for high speed, high precision manipulation. In the design methodology presented, the procedure begins by considering the kinematic aspects and ends by configuring manipulator structures with promising kinematic and dynamic characteristics. Based on the conceptual design considerations, a novel 3 DOF (RRR) direct-drive manipulator is proposed and analyzed. The manipulator structure has only five links and a compact configuration. Manipulator kinematics and dynamics are analyzed. Design guidelines are derived for static balancing of the manipulator and for minimizing the inertias driven by the motors. Operational configurations that either improve or worsen the kinematic and dynamic behaviour or characteristics of the manipulator are identified. The proposed design has an advantage over many currently known direct-drive manipulators for achieving two desirable mechanical features, namely: static balancing and compactness (smaller driven inertias).


Robotica ◽  
1996 ◽  
Vol 14 (3) ◽  
pp. 301-309 ◽  
Author(s):  
Ali Meghdari

SUMMARYThis paper presents the conceptual designs, kinematics and dynamics modeling of a cooperative re-configurable Dual-Arm Cam-Lock Manipulator. A cam-lock manipulator is a robotics structure with a pair of multi-degree of freedom planar arms jointed together at a shared base. This manipulator is designed to be capable of performing a wide variety of tasks by automatically re-configuring itself to form a variable geometry, stiffness, damping, and workspace robotics structure by the virtue of a novel link/joint design along i''s arms, labeled as the cam-lock design. The kinematics and dynamics of this manipulator is described using admissible variables (i.e., variables that define the constrained admissible motion). Along with the dynamic relations of this manipulator, a generic equation was also developed for the joint servo system.


Author(s):  
Ehud Kroll ◽  
Sridhar S. Condoor ◽  
David G. Jansson
Keyword(s):  

2015 ◽  
Vol 1 (1) ◽  
pp. 5-16
Author(s):  
John Ohoiwutun

Utilization of conventional energy sources such as coal, fuel oil, natural gas and others on the one hand has a low operating cost, but on the other side of the barriers is the greater source of diminishing returns and, more importantly, the emergence of environmental pollution problems dangerous to human life. This study aims to formulate the kinematics and dynamics to determine the movement of Solar Power Mower. In this study, using solar power as an energy source to charge the battery which then runs the robot. Design and research was conducted in the Department of Mechanical Workshop Faculty of Engineering, University of Hasanuddin of Gowa. Control system used is a manual system using radio wave transmitter and receiver which in turn drive the robot in the direction intended. Experimental results showed that treatment with three variations of the speed of 6.63 m / s, 8.84 m / s and 15.89 m / sec then obtained the best results occur in grass cutting 15.89 sec and high-speed cutting grass 5 cm. Formulation of kinematics and dynamics for lawn mowers, there are 2 control input variables, x and y ̇ ̇ 3 to control the output variables x, y and θ so that there is one variable redudant. Keywords: mobile robots, lawn mower, solar power


2019 ◽  
Vol 6 (3) ◽  
pp. 80-85
Author(s):  
Denis Igorevich Smagin ◽  
Konstantin Igorevich Starostin ◽  
Roman Sergeevich Savelyev ◽  
Anatoly Anatolyevich Satin ◽  
Anastasiya Romanovna Neveshkina ◽  
...  

One of the ways to achieve safety and comfort is to improve on-board air conditioning systems.The use of air cooling machine determines the air pressure high level at the point of selection from the aircraft engine compressor. Because of the aircraft operation in different modes and especially in the modes of small gas engines, deliberately high stages of selection have to be used for ensuring proper operation of the refrigeration machine in the modes of the aircraft small gas engines. Into force of this, most modes of aircraft operation have to throttle the pressure of the selected stage of selection, which, together with the low efficiency of the air cycle cooling system, makes the currently used air conditioning systems energy inefficient.A key feature of the architecture without air extraction from the main engines compressors is the use of electric drive compressors as a source of compressed air.A comparative analysis of competing variants of on-board air conditioning system without air extraction from engines for longrange aircraft projects was performed at the Moscow Aviation Institute (National Research University).The article deals with the main approaches to the decision-making process on the appearance of a promising aircraft on-board air conditioning system at the stage of its conceptual design and formulated the basic requirements for the structure of a complex criterion at different life cycle stages.The level of technical and technological risk, together with a larger installation weight, will require significant costs for development, testing, debugging and subsequent implementation, but at the same time on-board air conditioning system scheme without air extraction from the engines will achieve a significant increase in fuel efficiency at the level of the entire aircraft.


2014 ◽  
Vol 10 (6) ◽  
pp. 5-15
Author(s):  
S.A. Matviyenko ◽  
Keyword(s):  

2014 ◽  
Vol 8 (6) ◽  
pp. 1037
Author(s):  
Ratna Chow ◽  
Ahmad Faizal Salleh ◽  
Mohd Shahril Salim ◽  
Wan Mohd Radzi Bin Rusli ◽  
Norazian Abd. Razak ◽  
...  

2006 ◽  
Vol 34 (3) ◽  
pp. 170-194 ◽  
Author(s):  
M. Koishi ◽  
Z. Shida

Abstract Since tires carry out many functions and many of them have tradeoffs, it is important to find the combination of design variables that satisfy well-balanced performance in conceptual design stage. To find a good design of tires is to solve the multi-objective design problems, i.e., inverse problems. However, due to the lack of suitable solution techniques, such problems are converted into a single-objective optimization problem before being solved. Therefore, it is difficult to find the Pareto solutions of multi-objective design problems of tires. Recently, multi-objective evolutionary algorithms have become popular in many fields to find the Pareto solutions. In this paper, we propose a design procedure to solve multi-objective design problems as the comprehensive solver of inverse problems. At first, a multi-objective genetic algorithm (MOGA) is employed to find the Pareto solutions of tire performance, which are in multi-dimensional space of objective functions. Response surface method is also used to evaluate objective functions in the optimization process and can reduce CPU time dramatically. In addition, a self-organizing map (SOM) proposed by Kohonen is used to map Pareto solutions from high-dimensional objective space onto two-dimensional space. Using SOM, design engineers see easily the Pareto solutions of tire performance and can find suitable design plans. The SOM can be considered as an inverse function that defines the relation between Pareto solutions and design variables. To demonstrate the procedure, tire tread design is conducted. The objective of design is to improve uneven wear and wear life for both the front tire and the rear tire of a passenger car. Wear performance is evaluated by finite element analysis (FEA). Response surface is obtained by the design of experiments and FEA. Using both MOGA and SOM, we obtain a map of Pareto solutions. We can find suitable design plans that satisfy well-balanced performance on the map called “multi-performance map.” It helps tire design engineers to make their decision in conceptual design stage.


Sign in / Sign up

Export Citation Format

Share Document