scholarly journals Mass gap in strongly coupled infinite derivative non-local Higgs: Dyson-Schwinger approach

Author(s):  
Anish Ghoshal ◽  
Marco Frasca
2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Marco Frasca ◽  
Anish Ghoshal

Abstract We investigate the non-perturbative regimes in the class of non-Abelian theories that have been proposed as an ultraviolet completion of 4-D Quantum Field Theory (QFT) generalizing the kinetic energy operators to an infinite series of higher-order derivatives inspired by string field theory. We prove that, at the non-perturbative level, the physical spectrum of the theory is actually corrected by the “infinite number of derivatives” present in the action. We derive a set of Dyson-Schwinger equations in differential form, for correlation functions till two-points, the solution for which are known in the local theory. We obtain that just like in the local theory, the non-local counterpart displays a mass gap, depending also on the mass scale of non-locality, and show that it is damped in the deep UV asymptotically. We point out some possible implications of our result in particle physics and cosmology and discuss aspects of non-local QCD-like scenarios.


2018 ◽  
Vol 175 ◽  
pp. 03004 ◽  
Author(s):  
David Schaich ◽  
Simon Catterall

We present ongoing investigations of a four-dimensional lattice field theory with four massless reduced staggered fermions coupled through an SU(4)-invariant fourfermion interaction. As in previous studies of four-fermion and Higgs–Yukawa models with different lattice fermion discretizations, we observe a strong-coupling phase in which the system develops a mass gap without breaking any lattice symmetry. This symmetric strong-coupling phase is separated from the symmetric weak-coupling phase by a narrow region of four-fermi coupling in which the system exhibits long-range correlations.


2014 ◽  
Vol 25 (3) ◽  
pp. 307-327 ◽  
Author(s):  
JILU WANG ◽  
WEIWEI SUN

The paper is concerned with heat and sweat transport in porous textile media with a non-local thermal radiation and phase change. The model, based on a combination of these classical heat transfer mechanisms (convection, conduction and radiation), is governed by a nonlinear, degenerate and strongly coupled parabolic system. The thermal radiative flow is described by a radiation transport equation and characterized by the thermal absorptivity and emissivity of fibre. A conservative boundary condition is introduced to describe the radiative heat flux interacting with environment. With the conservative boundary condition, we prove the global existence of positive/non-negative weak solutions of a nonlinear parabolic system. A typical clothing assembly with a polyester batting material sandwiched in two laminated covers is investigated numerically. Numerical results show that the contribution of radiative heat transfer is comparable with that of conduction/convection in the sweating system.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Xing-Fu Su ◽  
You-Ying Li ◽  
Rosy Nicolaidou ◽  
Min Chen ◽  
Hsin-Yeh Wu ◽  
...  

AbstractNon-local extensions of the Standard Model with a non-locality scale $$\varLambda _{NL}$$ Λ NL have the effect of smearing the pointlike vertices of the Standard Model. At energies significantly lower than $$\varLambda _{NL}$$ Λ NL vertices appear pointlike, while beyond this scale all beta functions vanish and all couplings approach a fixed point leading to scale invariance. Non-local SM extensions are ghost free, with the non-locality scale serving as an effective cutoff to radiative corrections of the Higgs mass. We argue that the data expected to be collected at the LHC phase 2 will have a sensitivity to non-local effects originating from a non-locality scale of a few TeV. Using an infinite derivative prescription, we study modifications to heavy vector-boson cross sections that can lead to an enhanced production of boosted Higgs bosons in a region of the kinematic phase space where the SM background is very small.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Mithat Ünsal

Abstract We consider a class of quantum field theories and quantum mechanics, which we couple to ℤN topological QFTs, in order to classify non-perturbative effects in the original theory. The ℤN TQFT structure arises naturally from turning on a classical background field for a ℤN 0- or 1-form global symmetry. In SU(N) Yang-Mills theory coupled to ℤN TQFT, the non-perturbative expansion parameter is exp[−SI/N] = exp[−8π2/g2N] both in the semi-classical weak coupling domain and strong coupling domain, corresponding to a fractional topological charge configurations. To classify the non-perturbative effects in original SU(N) theory, we must use PSU(N) bundle and lift configurations (critical points at infinity) for which there is no obstruction back to SU(N). These provide a refinement of instanton sums: integer topological charge, but crucially fractional action configurations contribute, providing a TQFT protected generalization of resurgent semi-classical expansion to strong coupling. Monopole-instantons (or fractional instantons) on T3 × $$ {S}_L^1 $$ S L 1 can be interpreted as tunneling events in the ’t Hooft flux background in the PSU(N) bundle. The construction provides a new perspective to the strong coupling regime of QFTs and resolves a number of old standing issues, especially, fixes the conflicts between the large-N and instanton analysis. We derive the mass gap at θ = 0 and gaplessness at θ = π in $$ \mathbbm{CP} $$ CP 1 model, and mass gap for arbitrary θ in $$ \mathbbm{CP} $$ CP N−1, N ≥ 3 on ℝ2.


2010 ◽  
Vol 25 (02n03) ◽  
pp. 627-636 ◽  
Author(s):  
GREGORY GABADADZE

Arguments are summarized, that neutral matter made of helium, carbon, etc., should form a quantum liquid at the above-atomic but below-nuclear densities for which the charged spin-0 nuclei can condense. The resulting substance has distinctive features, such as a mass gap in the bosonic sector and a gap-less spectrum of quasifermions, which determine its thermodynamic properties. I discuss an effective field theory description of this substance, and as an example, consider its application to calculation of a static potential between heavy charged impurities. The potential exhibits a long-range oscillatory behavior in which both the fermionic and bosonic low-energy degree of freedom contribute. Observational consequences of the condensate for cooling of helium-core white dwarf stars are briefly discussed.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Atanu Bhatta ◽  
Shankhadeep Chakrabortty ◽  
Suat Dengiz ◽  
Ercan Kilicarslan

Abstract In this work, we perform a holographic analysis to study non local observables associated to a uniformly boosted strongly coupled large N thermal plasma in d-dimensions. In order to accomplish the holographic analysis, the appropriate dual bulk theory turns out to be $$d+1$$d+1 dimensional boosted AdS-Schwarzschild blackhole background. In particular, we compute entanglement entropy of the boosted plasma at high temperature living inside a strip geometry with entangling width l in the boundary at a particular instant of time. We also study the two-point correlators in the boundary by following geodesic approximation method. For analyzing the effect of boosting on the thermal plasma and correspondingly on both non local observables, we keep the alignment of the width of region of interest both parallel and perpendicular to the direction of the boost. We find our results significantly modified compared to those in un-boosted plasma up to the quadratic order of the boost velocity v. More interestingly, the relative orientation of the boost and the entangling width play a crucial role to quantify the holographic entanglement entropy in the boundary theory. The breaking of rotational symmetry in the boundary theory due to the boosting of the plasma along a specific flat direction causes this interesting feature.


2007 ◽  
Vol 21 (13n14) ◽  
pp. 2362-2370
Author(s):  
J. RANNINGER

We consider systems where the amplitude and the phase of a superfluid order parameter are controlled independently by local, respectively non-local phase correlations of the internal degrees of freedom of quasi-particles which characterize the different phases of such fermionic systems. A possible realization of such a situation is when pairing into the bosonic entities occurs via resonant scattering of itinerant fermionic particles. Examples for that are the ultracold fermionic gases in optical traps and lattices, the correlated electronic systems and strongly coupled electron-phonon systems, such as seen in the high Tc cuprates. We demonstrate the occurrence of a quantum phase transition from a superfluid to a phase uncorrelated boson liquid state in such systems, which is controlled by the competing effects of long and short range phase correlations of the constituents of composite quasi-particles.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Daniel Elander ◽  
Michele Frigerio ◽  
Marc Knecht ◽  
Jean-Loïc Kneur

Abstract We study strongly-coupled, approximately scale-invariant gauge theories, which develop a mass gap in the infrared. We argue that a large number of fermion flavours is most suitable to provide an ultraviolet completion for the composite Higgs scenario. The holographic approach allows to describe the qualitative features of the non-perturbative dynamics in the Veneziano limit. We introduce new bottom-up holographic models, which incorporate the backreaction of flavour on the geometry, and show that this can correlate the mass gap to the scale of flavour-symmetry breaking. We compute the mass spectrum for the various composite bosonic states, and study its dependence on the scaling dimension of the symmetry-breaking operators, as well as on the number of flavours. The different regions with a light dilaton are critically surveyed. We carefully assess the domain of validity of the holographic approach, and compare it with lattice simulations and the Nambu-Jona-Lasinio model.


Sign in / Sign up

Export Citation Format

Share Document