Crystal structure and optical properties of silver-doped copper nitride films (Cu3N:Ag) prepared by magnetron sputtering

2018 ◽  
Vol 51 (5) ◽  
pp. 055305 ◽  
Author(s):  
Jianrong Xiao ◽  
Meng Qi ◽  
Chenyang Gong ◽  
Zhiyong Wang ◽  
Aihua Jiang ◽  
...  
RSC Advances ◽  
2016 ◽  
Vol 6 (47) ◽  
pp. 40895-40899 ◽  
Author(s):  
Jianrong Xiao ◽  
Meng Qi ◽  
Yong Cheng ◽  
Aihua Jiang ◽  
Yaping Zeng ◽  
...  

Cu3N films were prepared by radio frequency magnetron sputtering techniques and the optical properties of the films were investigated.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2694
Author(s):  
Magdalena Wilczopolska ◽  
Katarzyna Nowakowska-Langier ◽  
Sebastian Okrasa ◽  
Lukasz Skowronski ◽  
Roman Minikayev ◽  
...  

Copper nitride shows various properties that depend on the structure of the material and is influenced by the change in technical parameters. In the present work, Cu–N layers were synthesized using the pulsed magnetron sputtering method. The synthesis was performed under different operating conditions: direct current (DC) or alternating current (AC) power supply, and various atmospheres: pure Ar and a mixture of Ar + N2. The structural properties of the deposited layers were characterized by X-ray diffraction measurements, and Raman spectroscopy and scanning electron microscopy have been performed. Optical properties were also evaluated. The obtained layers showed tightly packed columnar grain features. The kinetics of the layer growth in the AC mode was lower than that observed in the DC mode, and the layers were thinner and more fine-grained. The copper nitride layers were characterized by the one-phase and two-phase polycrystalline structure of the Cu3N phase with the preferred growth orientation (100). The lattice constant oscillates between 3.808 and 3.815 Å for one-phase and has a value of 3.828 Å for a two-phase structure. Phase composition results were correlated with Raman spectroscopy measurements. Raman spectra exhibited a broad, diffused, and intense signal of Cu3N phase, with Raman shift located at 628–635 cm−1. Studies on optical properties showed that the energy gap ranged from 2.17 to 2.47 eV. The results showed that controlling technical parameters gives a possibility to optimize the structure and phase composition of deposited layers. The reported changes were discussed and attributed to the properties of the material layers and technology method.


1993 ◽  
Vol 329 ◽  
Author(s):  
Vivien D.

AbstractIn this paper the relationships between the crystal structure, chemical composition and electronic structure of laser materials, and their optical properties are discussed. A brief description is given of the different laser activators and of the influence of the matrix on laser characteristics in terms of crystal field strength, symmetry, covalency and phonon frequencies. The last part of the paper lays emphasis on the means to optimize the matrix-activator properties such as control of the oxidation state and site occupancy of the activator and influence of its concentration.


2017 ◽  
Vol 9 (5) ◽  
pp. 05035-1-05035-6 ◽  
Author(s):  
G. I. Kopach ◽  
◽  
R. P. Mygushchenko ◽  
G. S. Khrypunov ◽  
A. I. Dobrozhan ◽  
...  

Author(s):  
Galina M. Kuz’micheva ◽  
Liudmila. I. Ivleva ◽  
Irina A. Kaurova ◽  
Evgeny V. Khramov ◽  
Victor B. Rybakov ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 937
Author(s):  
Yingying Hu ◽  
Md Rasadujjaman ◽  
Yanrong Wang ◽  
Jing Zhang ◽  
Jiang Yan ◽  
...  

By reactive DC magnetron sputtering from a pure Ta target onto silicon substrates, Ta(N) films were prepared with different N2 flow rates of 0, 12, 17, 25, 38, and 58 sccm. The effects of N2 flow rate on the electrical properties, crystal structure, elemental composition, and optical properties of Ta(N) were studied. These properties were characterized by the four-probe method, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). Results show that the deposition rate decreases with an increase of N2 flows. Furthermore, as resistivity increases, the crystal size decreases, the crystal structure transitions from β-Ta to TaN(111), and finally becomes the N-rich phase Ta3N5(130, 040). Studying the optical properties, it is found that there are differences in the refractive index (n) and extinction coefficient (k) of Ta(N) with different thicknesses and different N2 flow rates, depending on the crystal size and crystal phase structure.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Tetsuya Kouno ◽  
Masaru Sakai ◽  
Katsumi Kishino ◽  
Akihiko Kikuchi ◽  
Naoki Umehara ◽  
...  

A Correction to this paper has been published: https://doi.org/10.1038/s41427-021-00298-9


Sign in / Sign up

Export Citation Format

Share Document