Dust dynamics during the plasma afterglow

Author(s):  
Igor B Denysenko ◽  
Maxime Mikikian ◽  
Nikolai Azarenkov

Abstract The charge and dynamics of dust particles in an afterglow plasma are studied using a 1D model in the diffusion approximation, taking into account the transition from ambipolar to free diffusion. It is analyzed how external conditions (dust particle size, neutral gas pressure and initial electron density) affect the dust motion. The dust particle dynamics has been examined in microgravity conditions and in presence of gravity. Without gravity, the location of dust particles in plasma volume may change essentially during the afterglow if the dust size and pressure are small (≤ 10 nm and ≤ 30 mTorr, respectively). At small pressures, in the very beginning of afterglow, small nanoparticles move to the plasma boundary because the ion drag force dominates over the electric force. At afterglow times when the electron temperature becomes time-independent, the ion drag force decreases faster with time than the electric force due to the ion density decrease, and dust particles may move to the slab center. In presence of gravity, the effect of gravity force on dust particles is important only at large afterglow times (t ≥ 10 ms), when the electric and ion drag forces are small. The dust dynamics depends essentially on the initial plasma density. If the density is large (~ 1012 cm-3), small nanoparticles (≤ 10 nm) may deposit on plasma walls in the beginning of plasma afterglow because of an enhancement of the ion drag force.

Open Physics ◽  
2004 ◽  
Vol 2 (1) ◽  
Author(s):  
Vladimir Gundienkov ◽  
Sergey Yakovlenko

AbstractTwo charged dust particles inside a cloud of charges are considered as Debye atoms forming a Debye molecule. Cassini coordinates are used for the numerical solution of the Poisson-Boltzmann equation for the charged cloud. The electric force acting on a dust particle by the other dust particle was determined by integrating the electrostatic pressure on the surface of the dust particle. It is shown that attractive forces appear when the following two conditions are satisfied. First, the average distance between dust particles should be approximately equal to two Debye radii. Second, attraction takes place when similar charges are concentrated predominantly on the dust particles. If the particles carry a small fraction of total charge of the same polarity, repulsion between the particles takes place at all distances. We apply our results to the experiments with thermoemission plasma and to the experiments with nuclear-pumped plasma.


1984 ◽  
Vol 75 ◽  
pp. 597
Author(s):  
E. Grün ◽  
G.E. Morfill ◽  
T.V. Johnson ◽  
G.H. Schwehm

ABSTRACTSaturn's broad E ring, the narrow G ring and the structured and apparently time variable F ring(s), contain many micron and sub-micron sized particles, which make up the “visible” component. These rings (or ring systems) are in direct contact with magnetospheric plasma. Fluctuations in the plasma density and/or mean energy, due to magnetospheric and solar wind processes, may induce stochastic charge variations on the dust particles, which in turn lead to an orbit perturbation and spatial diffusion. It is suggested that the extent of the E ring and the braided, kinky structure of certain portions of the F rings as well as possible time variations are a result of plasma induced electromagnetic perturbations and drag forces. The G ring, in this scenario, requires some form of shepherding and should be akin to the F ring in structure. Sputtering of micron-sized dust particles in the E ring by magnetospheric ions yields lifetimes of 102to 104years. This effect as well as the plasma induced transport processes require an active source for the E ring, probably Enceladus.


2011 ◽  
Vol 11 (2) ◽  
pp. 723-740 ◽  
Author(s):  
G. Chen ◽  
L. D. Ziemba ◽  
D. A. Chu ◽  
K. L. Thornhill ◽  
G. L. Schuster ◽  
...  

Abstract. As part of the international project entitled "African Monsoon Multidisciplinary Analysis (AMMA)", NAMMA (NASA AMMA) aimed to gain a better understanding of the relationship between the African Easterly Waves (AEWs), the Sahara Air Layer (SAL), and tropical cyclogenesis. The NAMMA airborne field campaign was based out of the Cape Verde Islands during the peak of the hurricane season, i.e., August and September 2006. Multiple Sahara dust layers were sampled during 62 encounters in the eastern portion of the hurricane main development region, covering both the eastern North Atlantic Ocean and the western Saharan desert (i.e., 5–22° N and 10–35° W). The centers of these layers were located at altitudes between 1.5 and 3.3 km and the layer thickness ranged from 0.5 to 3 km. Detailed dust microphysical and optical properties were characterized using a suite of in-situ instruments aboard the NASA DC-8 that included a particle counter, an Ultra-High Sensitivity Aerosol Spectrometer, an Aerodynamic Particle Sizer, a nephelometer, and a Particle Soot Absorption Photometer. The NAAMA sampling inlet has a size cut (i.e., 50% transmission efficiency size) of approximately 4 μm in diameter for dust particles, which limits the representativeness of the NAMMA observational findings. The NAMMA dust observations showed relatively low particle number densities, ranging from 268 to 461 cm−3, but highly elevated volume density with an average at 45 μm3 cm−3. NAMMA dust particle size distributions can be well represented by tri-modal lognormal regressions. The estimated volume median diameter (VMD) is averaged at 2.1 μm with a small range of variation regardless of the vertical and geographical sampling locations. The Ångström Exponent assessments exhibited strong wavelength dependence for absorption but a weak one for scattering. The single scattering albedo was estimated at 0.97 ± 0.02. The imaginary part of the refractive index for Sahara dust was estimated at 0.0022, with a range from 0.0015 to 0.0044. Closure analysis showed that observed scattering coefficients are highly correlated with those calculated from spherical Mie-Theory and observed dust particle size distributions. These values are generally consistent with literature values reported from studies with similar particle sampling size range.


Author(s):  
Pål Lader ◽  
David W. Fredriksson ◽  
Zsolt Volent ◽  
Jud DeCew ◽  
Trond Rosten ◽  
...  

The use of closed flexible bags is among the suggestions considered as a potential way to expand the salmon production in Norway. Few ocean structures exist with large, heavily compliant submerged components, and there is presently limited existing knowledge about how aquaculture systems with flexible closed cages will respond to external sea loads. The flexibility and deformation of the bag are coupled to the hydrodynamic forces, and the forces and deformation will be dependent on the filling level of the bag. In order to get a better understanding of the drag forces on, and deformation of, such bags, experiments were conducted with a series of closed flexible bags. The bags were towed in a towing tank in order to simulate uniform current. Four different geometries were investigated, cylindrical, cubical, conical, and pyramidal, and the filling levels were varied between 70% and 120%. The main findings from the experiments were that the drag force was highly dependent on the filling level, and that the drag force increases with decreasing filling level. Comparing the drag force on a deflated bag with an inflated one showed an increase of up to 2.5 times.


2002 ◽  
Vol 68 (4) ◽  
pp. 249-255
Author(s):  
A. P. SUN ◽  
X. M. QIU ◽  
H. H. TONG ◽  
Q. C. CHEN

The Monte Carlo method is used to simulate ion transport in an Ar plasma electrode sheath with a non-uniform dust. Charge exchange and elastic collisions between ions and neutral atoms and also the collection and Coulomb scattering of ions on the dust particles are examined during the motion of ions in the sheath. In order to study the effect of the non-uniform dust density and size on ion transport, we choose an exponent dust density distribution with a uniform dust size and a normal dust radius distribution with a uniform density and compare the simulation results with those for a uniform dust. It is found that both a non-uniform and a uniform dust density affect the ion density arriving at the electrode significantly and to the same degree. At the same time, it is also found that a non-uniform and uniform dust size influence the ion density arriving at the electrode greatly, but with a slight difference. Therefore, although the dust content is very low in most processing plasmas, its influence becomes evident whether its content is uniform or non-uniform in content and size. So, we can come to the conclusion that the key factors affecting the influence of dust particles on plasma behaviour are the linear density and the average radius of dust particles rather than their distribution.


Fibers ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 90 ◽  
Author(s):  
Vasily A. Kirsch ◽  
Alexandr V. Bildyukevich ◽  
Stepan D. Bazhenov

A numerical simulation of the laminar flow field and convection–diffusion mass transfer in a regular system of parallel fully absorbing fibers for the range of Reynolds numbers up to Re = 300 is performed. An isolated row of equidistant circular fibers arranged normally to the external flow is considered as the simplest model for a hollow-fiber membrane contactor. The drag forces acting on the fibers with dependence on Re and on the ratio of the fiber diameter to the distance between the fiber axes, as well as the fiber Sherwood number versus Re and the Schmidt number, Sc, are calculated. A nonlinear regression formula is proposed for calculating the fiber drag force versus Re in a wide range of the interfiber distances. It is shown that the Natanson formula for the fiber Sherwood number as a function of the fiber drag force, Re, and Sc, which was originally derived in the limit of high Peclet numbers, is applicable for small and intermediate Reynolds numbers; intermediate and large Peclet numbers, where Pe = Re × Sc; and for sparse and moderately dense rows of fibers.


Author(s):  
Dag Myrhaug

This article provides a simple analytical method for giving estimates of random wave-driven drag forces on near-bed vegetation in shallow water from deepwater wind conditions. Results are exemplified using a Pierson–Moskowitz model wave spectrum for wind waves with the mean wind speed at the 10 m elevation above the sea surface as the parameter. The significant value of the drag force within a sea state of random waves is given, and an example typical for field conditions is presented. This method should serve as a useful tool for assessing random wave-induced drag force on vegetation in coastal zones and estuaries based on input from deepwater wind conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Jiangfeng Shao ◽  
Jiandong Mao

Dust particle size distributions in Yinchuan, China, were measured during March and April 2014, using APS-3321 sampler. The distributions were measured under different dust conditions (background, floating dust, blowing dust, and dust storm) and statistical analyses were performed. The results showed that, under different dust conditions, the instantaneous number concentrations of dust particles differed widely. For example, during blowing sand and dust storm conditions, instantaneous dust particles concentrations varied substantially, while, under floating dust conditions, concentration differences were relatively small. The average dust particles size distributions were unimodal under all dust conditions, but the average surface area and mass size distributions were all bimodal. These distributions had peaks in different locations under different dust conditions. Under different dust conditions, wind speed and humidity were very important factors for particles size distributions. With increasing wind speed and decreasing humidity, fine particles were dominant in the atmosphere and the number and mass distributions of the coarse particles were indicative of long-range transport from surrounding deserts. Different dust conditions had different influences on PM1, PM2.5, and PM10concentrations.


2012 ◽  
Vol 114 (3) ◽  
pp. 535-546 ◽  
Author(s):  
A. F. Pal ◽  
A. N. Ryabinkin ◽  
A. O. Serov ◽  
N. A. Dyatko ◽  
A. N. Starostin ◽  
...  

2013 ◽  
Vol 860-863 ◽  
pp. 1547-1550
Author(s):  
Rui Le ◽  
Wei Jiang ◽  
Qi Liu ◽  
Nan Chang Sun ◽  
Bing Xu

It is well known that the hydraulic drag force on objects cant be ignored in computing the movement of objects in water. And the drag forces on sphere and cuboids have long been studied. While in hydraulic engineering, objects with regular tetrahedron shape are widely used to form the foundation and temporary dam for they can interlock each other to obtain a compacted integral. In this article the vertical hydraulic drag force on regular tetrahedron is studied by indoor experiments, the relation of the vertical hydraulic drag coefficient and the vertical velocity is proposed. And the max vertical speeds of different materials are deduced. The result is helpful to compute the movement of regular tetrahedron in water and estimate the impact effect on the groundwork.


Sign in / Sign up

Export Citation Format

Share Document