Impact of noble-gas filler atoms on the lattice thermal conductivity of CoSb3 skutterudites: first-principles modelling

Author(s):  
Jianqin Tang ◽  
Jonathan Michael Skelton
RSC Advances ◽  
2021 ◽  
Vol 11 (25) ◽  
pp. 15486-15496
Author(s):  
Enamul Haque

The layered structure, and presence of heavier elements Rb/Cs and Sb induce high anharmonicity, low Debye temperature, intense phonon scattering, and hence, low lattice thermal conductivity.


2021 ◽  
Author(s):  
Un-Gi Jong ◽  
Chol-Hyok Ri ◽  
Chol-Jin Pak ◽  
Chol-Hyok Kim ◽  
Stefaan Cottenier ◽  
...  

In the search for better thermoelectric materials, metal phosphides have not been considered to be viable candidates so far, due to their large lattice thermal conductivity. Here we study thermoelectric...


2020 ◽  
Author(s):  
Jianqin Tang ◽  
Jonathan Skelton

We present a systematic first-principles modelling study of the structural dynamics and thermal transport in the CoSb<sub>3</sub> skutterudites with a series of noble-gas filler atoms. A range of analysis techniques are proposed to estimate the filler rattling frequencies, to quantify the separate impacts of filling on the phonon group velocities and lifetimes, and to show how changes to the phonon spectra and interaction strengths lead to suppressed lifetimes. The fillers are found to reduce the thermal conductivity of the CoSb<sub>3</sub> framework by up to 15 % primarily by suppressing the group velocities of low-lying optic modes. Calculations show that the filler rattling frequencies are determined by a detailed balance of increasing atomic mass and stronger interactions with the framework, and are a good predictor of their impact on the heat transport. Lowering the rattling frequency below ~1.5 THz by selecting heavy fillers that interact weakly with the framework is predicted to produce a much larger suppression of the thermal transport, by inducing avoided crossings in the acoustic-mode dispersion and facilitating resonant scattering with a consequent large reduction in the lifetimes. Approximate rattling frequencies determined from the harmonic force constants may therefore provide a useful metric for selecting filler atoms to optimise the thermal transport in skutterudites and other cage compounds such as clathrates.


RSC Advances ◽  
2019 ◽  
Vol 9 (62) ◽  
pp. 36301-36307 ◽  
Author(s):  
Jinjie Gu ◽  
Lirong Huang ◽  
Shengzong Liu

The excellent thermoelectric performance of monolayer KCuTe is discovered by first-principles study for the first time.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji Qi ◽  
Baojuan Dong ◽  
Zhe Zhang ◽  
Zhao Zhang ◽  
Yanna Chen ◽  
...  

Abstract A solid with larger sound speeds usually exhibits higher lattice thermal conductivity. Here, we report an exception that CuP2 has a quite large mean sound speed of 4155 m s−1, comparable to GaAs, but single crystals show very low lattice thermal conductivity of about 4 W m−1 K−1 at room temperature, one order of magnitude smaller than GaAs. To understand such a puzzling thermal transport behavior, we have thoroughly investigated the atomic structures and lattice dynamics by combining neutron scattering techniques with first-principles simulations. This compound crystallizes in a layered structure where Cu atoms forming dimers are sandwiched in between P atomic networks. In this work, we reveal that Cu atomic dimers vibrate as a rattling mode with frequency around 11 meV, which is manifested to be remarkably anharmonic and strongly scatters acoustic phonons to achieve the low lattice thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document