Integrity monitoring for undifferenced and uncombined PPP under the local environment

Author(s):  
jie zhang ◽  
Lin Zhao ◽  
Fuxin Yang ◽  
Liang Li ◽  
Xiaosong Liu ◽  
...  

Abstract Integrity monitoring of precise point positioning (PPP) can provide tightly guaranteed absolute position error bounds for safety-critical applications. However, complex local environment makes PPP integrity monitoring much more challenging, such as urban canyons. Significant prone multipaths and low observation redundancy are main difficulties to the accuracy and the reliability of PPP. Therefore, we proposed a solution separation-based integrity monitoring algorithm, which is based on a single and dual frequency-mixed undifferenced and uncombined PPP model considering compensation for the multipath error distortion by Gaussian overbounding. Both the static and the kinematic data are utilized to test the proposed algorithm. The results show that the proposed algorithm can produce adequate protection level in horizontal and vertical directions. Furthermore, the proposed algorithm can obtain smoother protection level and positioning error under the dynamic local environment, and effectively suppress the misleading information.

2018 ◽  
Vol 10 (6) ◽  
pp. 168781401877619 ◽  
Author(s):  
Xueen Zheng ◽  
Ye Liu ◽  
Guochao Fan ◽  
Jing Zhao ◽  
Chengdong Xu

The availability of advanced receiver autonomous integrity monitoring for vertical guidance down to altitudes of 200 ft (LPV-200) is discussed using real satellite orbit/ephemeris data collected at eight international global navigation satellite system service stations across China. Analyses were conducted for the availability of multi-constellation advanced receiver autonomous integrity monitoring and multi-fault advanced receiver autonomous integrity monitoring, and the sensitivity of availability in response to changes in error model parameters (i.e. user range accuracy, user range error, Bias-Nom and Bias-Max) was used to compute the vertical protection level. The results demonstrated that advanced receiver autonomous integrity monitoring availability based on multiple constellations met the requirements of LPV-200 despite multiple-fault detections that reduced the availability of the advanced receiver autonomous integrity monitoring algorithm; the advanced receiver autonomous integrity monitoring availability thresholds of the user range error and Bias-Nom used for accuracy were more relevant to geographic information than the user range accuracy and Bias-Max used for integrity at the eight international global navigation satellite system service stations. Finally, the possibility of using the advanced receiver autonomous integrity monitoring algorithm for a Category III navigation standard is discussed using two sets of predicted errors, revealing that the algorithm could be used in 79% of China.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Baocheng Zhang ◽  
Chuanbao Zhao ◽  
Robert Odolinski ◽  
Teng Liu

AbstractPrecise Point Positioning (PPP), initially developed for the analysis of the Global Positing System (GPS) data from a large geodetic network, gradually becomes an effective tool for positioning, timing, remote sensing of atmospheric water vapor, and monitoring of Earth’s ionospheric Total Electron Content (TEC). The previous studies implicitly assumed that the receiver code biases stay constant over time in formulating the functional model of PPP. In this contribution, it is shown this assumption is not always valid and can lead to the degradation of PPP performance, especially for Slant TEC (STEC) retrieval and timing. For this reason, the PPP functional model is modified by taking into account the time-varying receiver code biases of the two frequencies. It is different from the Modified Carrier-to-Code Leveling (MCCL) method which can only obtain the variations of Receiver Differential Code Biases (RDCBs), i.e., the difference between the two frequencies’ code biases. In the Modified PPP (MPPP) model, the temporal variations of the receiver code biases become estimable and their adverse impacts on PPP parameters, such as ambiguity parameters, receiver clock offsets, and ionospheric delays, are mitigated. This is confirmed by undertaking numerical tests based on the real dual-frequency GPS data from a set of global continuously operating reference stations. The results imply that the variations of receiver code biases exhibit a correlation with the ambient temperature. With the modified functional model, an improvement by 42% to 96% is achieved in the Differences of STEC (DSTEC) compared to the original PPP model with regard to the reference values of those derived from the Geometry-Free (GF) carrier phase observations. The medium and long term (1 × 104 to 1.5 × 104 s) frequency stability of receiver clocks are also significantly improved.


GPS Solutions ◽  
2021 ◽  
Vol 25 (2) ◽  
Author(s):  
Liang Wang ◽  
Zishen Li ◽  
Ningbo Wang ◽  
Zhiyu Wang

AbstractGlobal Navigation Satellite System raw measurements from Android smart devices make accurate positioning possible with advanced techniques, e.g., precise point positioning (PPP). To achieve the sub-meter-level positioning accuracy with low-cost smart devices, the PPP algorithm developed for geodetic receivers is adapted and an approach named Smart-PPP is proposed in this contribution. In Smart-PPP, the uncombined PPP model is applied for the unified processing of single- and dual-frequency measurements from tracked satellites. The receiver clock terms are parameterized independently for the code and carrier phase measurements of each tracking signal for handling the inconsistency between the code and carrier phases measured by smart devices. The ionospheric pseudo-observations are adopted to provide absolute constraints on the estimation of slant ionospheric delays and to strengthen the uncombined PPP model. A modified stochastic model is employed to weight code and carrier phase measurements by considering the high correlation between the measurement errors and the signal strengths for smart devices. Additionally, an application software based on the Android platform is developed for realizing Smart-PPP in smart devices. The positioning performance of Smart-PPP is validated in both static and kinematic cases. Results show that the positioning errors of Smart-PPP solutions can converge to below 1.0 m within a few minutes in static mode and the converged solutions can achieve an accuracy of about 0.2 m of root mean square (RMS) both for the east, north and up components. For the kinematic test, the RMS values of Smart-PPP positioning errors are 0.65, 0.54 and 1.09 m in the east, north and up components, respectively. Static and kinematic tests both show that the Smart-PPP solutions outperform the internal results provided by the experimental smart devices.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2189 ◽  
Author(s):  
Qiong Wu ◽  
Mengfei Sun ◽  
Changjie Zhou ◽  
Peng Zhang

The update of the Android system and the emergence of the dual-frequency GNSS chips enable smartphones to acquire dual-frequency GNSS observations. In this paper, the GPS L1/L5 and Galileo E1/E5a dual-frequency PPP (precise point positioning) algorithm based on RTKLIB and GAMP was applied to analyze the positioning performance of the Xiaomi Mi 8 dual-frequency smartphone in static and kinematic modes. The results showed that in the static mode, the RMS position errors of the dual-frequency smartphone PPP solutions in the E, N, and U directions were 21.8 cm, 4.1 cm, and 11.0 cm, respectively, after convergence to 1 m within 102 min. The PPP of dual-frequency smartphone showed similar accuracy with geodetic receiver in single-frequency mode, while geodetic receiver in dual-frequency mode has higher accuracy. In the kinematic mode, the positioning track of the smartphone dual-frequency data had severe fluctuations, the positioning tracks derived from the smartphone and the geodetic receiver showed approximately difference of 3–5 m.


2021 ◽  
Vol 11 (22) ◽  
pp. 10642
Author(s):  
Rosendo Romero-Andrade ◽  
Manuel E. Trejo-Soto ◽  
Alejandro Vega-Ayala ◽  
Daniel Hernández-Andrade ◽  
Jesús R. Vázquez-Ontiveros ◽  
...  

A positional accuracy obtained by the Precise Point Positioning and static relative methods was compared and analyzed. Test data was collected using low-cost GNSS receivers of single- and dual-frequency in urban areas. The data was analyzed for quality using the TEQC program to determine the degree of affectation of the signal in the urban area. Low-cost GNSS receivers were found to be sensitive to the multipath effect, which impacts positioning. The horizontal and vertical accuracy was evaluated with respect to Mexican regulations for the GNSS establishment criteria. Probable Error Circle (CEP) and Vertical Positioning Accuracy (EPV) were performed on low cost GNSS receiver observation data. The results show that low-cost dual-frequency GNSS receivers can be used in urban areas. The precision was obtained in the order of 0.013 m in the static relative method. The results obtained are comparable to a geodetic receiver in a geodetic baseline of <20 km. The study does not recommend using single and dual frequencies low cost GNSS receivers based on results obtained by the Precise Point Positioning (PPP) method in urban areas. The inclusion of the GGM10 model reduces the vertical precision obtained by using low cost GNSS receivers in both methods, conforming to the regulations only in the horizontal component.


2020 ◽  
Author(s):  
Kan Wang ◽  
Ahmed El-Mowafy

&lt;p&gt;Australia and New Zealand has initiated a two-year test-bed in 2017 for the new generation of Satellite-Based Augmentation System (SBAS). In addition to the legacy L1 service, the test-bed broadcasts SBAS messages through L5 to support the dual-frequency multi-constellation (DFMC) service for GPS and Galileo. Furthermore, PPP corrections were also sent via L1 and L5 to support the PPP service for dual-frequency GPS users and GPS/Galileo users, respectively.&lt;/p&gt;&lt;p&gt;The positioning and integrity monitoring process are currently defined for the aeronautical DFMC SBAS service in [1]. For land applications in road transport, users may encounter problems in complicated measurement environments like urban areas, e.g., more complicated multipath effects and frequent filter initializations of the carrier-smoothed code observations. In this study, a new weighting model related to the elevation angles, the signal-to-noise ratios (SNRs) and the filter smoothing time is developed. The weighting coefficients adjusting the impacts of these factors are studied for the open-sky, the suburban and the urban scenarios. Applying the corresponding weighting models, the overbounding cumulative distribution functions (CDFs) of the weighted noise/biases are searched and proposed for these scenarios.&lt;/p&gt;&lt;p&gt;Using real data collected under different measurement scenarios mentioned above, the DFMC SBAS positioning errors and protection levels are computed in the horizontal direction based on the proposed weighting models and the proposed overbounding CDFs. The results are compared with the case applying only the traditional elevation-dependent weighting model. While the positioning accuracy and protection levels did not change much for the open-sky scenario, the RMS of the positioning errors and the average protection levels are found to be reduced in both the suburban and urban scenarios.&amp;#160;&lt;/p&gt;&lt;p&gt;[1] EUROCAE (2019) Minimum operational performance standard for Galileo/global positioning system/satellite-based augmentation system airborne equipment. The European Organisation for civil aviation equipment, ED-259, February 2019&lt;/p&gt;


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Gérard Petit ◽  
Zhiheng Jiang

We discuss the use of some new time transfer techniques for computing TAI time links. Precise point positioning (PPP) uses GPS dual frequency carrier phase and code measurements to compute the link between a local clock and a reference time scale with the precision of the carrier phase and the accuracy of the code. The time link between any two stations can then be computed by a simple difference. We show that this technique is well adapted and has better short-term stability than other techniques used in TAI. We present a method of combining PPP and two-way time transfer that takes advantage of the qualities of each technique, and shows that it would bring significant improvement to TAI links.


Sign in / Sign up

Export Citation Format

Share Document