Effect of Al thickness on the structural and ethanol vapor sensing performance of ZnO porous nanostructures prepared by microwave-assisted hydrothermal method

2020 ◽  
Vol 31 (14) ◽  
pp. 145502 ◽  
Author(s):  
Noor J Ridha ◽  
Firas K Mohamad Alosfur ◽  
Mohammad Hafizuddin Haji Jumali ◽  
S Radiman
Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1989
Author(s):  
Yuan-Chang Liang ◽  
Yen-Cheng Chang ◽  
Wei-Cheng Zhao

The porous zinc oxide-nickel oxide (ZnO-NiO) composite nanosheets were synthesized via sputtering deposition of NiO thin film on the porous ZnO nanosheet templates. Various NiO film coverage sizes on porous ZnO nanosheet templates were achieved by changing NiO sputtering duration in this study. The microstructures of the porous ZnO-NiO composite nanosheets were investigated herein. The rugged surface feature of the porous ZnO-NiO composite nanosheets were formed and thicker NiO coverage layer narrowed the pore size on the ZnO nanosheet template. The gas sensors based on the porous ZnO-NiO composite nanosheets displayed higher sensing responses to ethanol vapor in comparison with the pristine ZnO template at the given target gas concentrations. Furthermore, the porous ZnO-NiO composite nanosheets with the suitable NiO coverage content demonstrated superior gas-sensing performance towards 50–750 ppm ethanol vapor. The observed ethanol vapor-sensing performance might be attributed to suitable ZnO/NiO heterojunction numbers and unique porous nanosheet structure with a high specific surface area, providing abundant active sites on the surface and numerous gas diffusion channels for the ethanol vapor molecules. This study demonstrated that coating of NiO on the porous ZnO nanosheet template with a suitable coverage size via sputtering deposition is a promising route to fabricate porous ZnO-NiO composite nanosheets with a high ethanol vapor sensing ability.


2020 ◽  
Vol 8 (28) ◽  
pp. 9671-9677 ◽  
Author(s):  
Sha Wang ◽  
Zhimin Gao ◽  
Guoshuai Song ◽  
Yantao Yu ◽  
Wenxiu He ◽  
...  

The structure–function relationship of CuO hierarchical morphologies in gas sensing has been revealed.


2015 ◽  
Vol 15 (0) ◽  
pp. 1 ◽  
Author(s):  
M.T.V.P. Jayaweera ◽  
R.C.L. De Silva ◽  
I.R.M. Kottegoda ◽  
S.R.D. Rosa

2013 ◽  
Vol 3 (4) ◽  
pp. 477-484
Author(s):  
Arnayra Silva ◽  
Jefferson Andrade ◽  
Graziela Casali ◽  
Severino Lima ◽  
Elson Longo ◽  
...  

2019 ◽  
Vol 21 (5) ◽  
Author(s):  
I. A. Garduño-Wilches ◽  
G. Alarcón-Flores ◽  
S. Carmona-Téllez ◽  
J. Guzmán ◽  
M. Aguilar-Frutis

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1040 ◽  
Author(s):  
Getachew Solomon ◽  
Raffaello Mazzaro ◽  
Vittorio Morandi ◽  
Isabella Concina ◽  
Alberto Vomiero

Molybdenum sulfide (MoS2) has emerged as a promising catalyst for hydrogen evolution applications. The synthesis method mainly employed is a conventional hydrothermal method. This method requires a longer time compared to other methods such as microwave synthesis methods. There is a lack of comparison of the two synthesis methods in terms of crystal morphology and its electrochemical activities. In this work, MoS2 nanosheets are synthesized using both hydrothermal (HT-MoS2) and advanced microwave methods (MW-MoS2), their crystal morphology, and catalytical efficiency towards hydrogen evolution reaction (HER) were compared. MoS2 nanosheet is obtained using microwave-assisted synthesis in a very short time (30 min) compared to the 24 h hydrothermal synthesis method. Both methods produce thin and aggregated nanosheets. However, the nanosheets synthesized by the microwave method have a less crumpled structure and smoother edges compared to the hydrothermal method. The as-prepared nanosheets are tested and used as a catalyst for hydrogen evolution results in nearly similar electrocatalytic performance. Experimental results showed that: HT-MoS2 displays a current density of 10 mA/cm2 at overpotential (−280 mV) compared to MW-MoS2 which requires −320 mV to produce a similar current density, suggesting that the HT-MoS2 more active towards hydrogen evolutions reaction.


Sign in / Sign up

Export Citation Format

Share Document