Experimental Analysis of Tip Vibrations at Higher Eigenmodes of QPlus Sensors for Atomic Force Microscopy

2021 ◽  
Author(s):  
Michael G. Ruppert ◽  
Daniel Martin-Jimenez ◽  
Yuen Kuan Yong ◽  
Alexander Ihle ◽  
Andre Schirmeisen ◽  
...  

Abstract QPlus sensors are non-contact atomic force microscope probes constructed from a quartz tuning fork and a tungsten wire with an electrochemically etched tip. These probes are self-sensing and offer an atomic-scale spatial resolution. Therefore, qPlus sensors are routinely used to visualize the chemical structure of adsorbed organic molecules via the so-called bond imaging technique. This is achieved by functionalizing the AFM tip with a single CO molecule and exciting the sensor at the first vertical cantilever resonance mode. Recent work using higher-order resonance modes has also resolved the chemical structure of single organic molecules. However, in these experiments, the image contrast can differ significantly from the conventional bond imaging contrast, which was suspected to be caused by unknown vibrations of the tip. This work investigates the source of these artefacts by using a combination of mechanical simulation and laser vibrometry to characterize a range of sensors with different tip wire geometries. The results show that increased tip mass and length cause increased torsional rotation of the tuning fork beam due to the off-center mounting of the tip wire, and increased flexural vibration of the tip. These undesirable motions cause lateral deflection of the probe tip as it approaches the sample, which is rationalized to be the cause of the different image contrast. The results also provide a guide for future probe development to reduce these issues.

Nanoscale ◽  
2012 ◽  
Vol 4 (20) ◽  
pp. 6493 ◽  
Author(s):  
Sangmin An ◽  
Corey Stambaugh ◽  
Gunn Kim ◽  
Manhee Lee ◽  
Yonghee Kim ◽  
...  

2013 ◽  
Author(s):  
Sangmin An ◽  
Corey Stambaugh ◽  
Soyoung Kwon ◽  
Kunyoung Lee ◽  
Bongsu Kim ◽  
...  

2012 ◽  
Vol 3 ◽  
pp. 249-259 ◽  
Author(s):  
Zsolt Majzik ◽  
Martin Setvín ◽  
Andreas Bettac ◽  
Albrecht Feltz ◽  
Vladimír Cháb ◽  
...  

We present the results of simultaneous scanning-tunneling and frequency-modulated dynamic atomic force microscopy measurements with a qPlus setup. The qPlus sensor is a purely electrical sensor based on a quartz tuning fork. If both the tunneling current and the force signal are to be measured at the tip, a cross-talk of the tunneling current with the force signal can easily occur. The origin and general features of the capacitive cross-talk will be discussed in detail in this contribution. Furthermore, we describe an experimental setup that improves the level of decoupling between the tunneling-current and the deflection signal. The efficiency of this experimental setup is demonstrated through topography and site-specific force/tunneling-spectroscopy measurements on the Si(111) 7×7 surface. The results show an excellent agreement with previously reported data measured by optical interferometric deflection.


2021 ◽  
Vol 71 (5) ◽  
pp. 439-445
Author(s):  
Hyoju CHOE ◽  
Dongwon KIM ◽  
Manhee LEE* ◽  
Myungchul CHOI

Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1794 ◽  
Author(s):  
Sangmin An ◽  
Wonho Jhe

We introduce a nanopipette/quartz tuning fork (QTF)–atomic force microscope (AFM) for nanolithography and a nanorod/QTF–AFM for nanoscratching with in situ detection of shear dynamics during performance. Capillary-condensed nanoscale water meniscus-mediated and electric field-assisted small-volume liquid ejection and nanolithography in ambient conditions are performed at a low bias voltage (~10 V) via a nanopipette/QTF–AFM. We produce and analyze Au nanoparticle-aggregated nanowire by using nanomeniscus-based particle stacking via a nanopipette/QTF–AFM. In addition, we perform a nanoscratching technique using in situ detection of the mechanical interactions of shear dynamics via a nanorod/QTF–AFM with force sensor capability and high sensitivity.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5565 ◽  
Author(s):  
Roman Rousseau ◽  
Nicolas Maurin ◽  
Wioletta Trzpil ◽  
Michael Bahriz ◽  
Aurore Vicet

The quartz tuning fork (QTF) is a piezoelectric transducer with a high quality factor that was successfully employed in sensitive applications such as atomic force microscopy or Quartz-Enhanced Photo-Acoustic Spectroscopy (QEPAS). The variability of the environment (temperature, humidity) can lead to a drift of the QTF resonance. In most applications, regular QTF calibration is absolutely essential. Because the requirements vary greatly depending on the field of application, different characterization methods can be found in the literature. We present a review of these methods and compare them in terms of accuracy. Then, we further detail one technique, called Beat Frequency analysis, based on the transient response followed by heterodyning. This method proved to be fast and accurate. Further, we demonstrate the resonance tracking of the QTF while changing the temperature and the humidity. Finally, we integrate this characterization method in our Resonance Tracking (RT) QEPAS sensor and show the significant reduction of the signal drift compared to a conventional QEPAS sensor.


Sign in / Sign up

Export Citation Format

Share Document