A physical insight into variation aware minimum VDD for deep subthreshold operation of FinFET

Author(s):  
Sarita Yadav ◽  
Nitanshu Chauhan ◽  
Shobhit Tyagi ◽  
Arvind Sharma ◽  
Shashank Banchhor ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Peng Zhao ◽  
Yihang Zhang ◽  
Rongrong Sun ◽  
Wen-Sheng Zhao ◽  
Yue Hu ◽  
...  

A compact frequency selective surface (FSS) for 5G applications has been designed based on 2.5-dimensional Jerusalem cross. The proposed element consists of two main parts: the successive segments of the metal traces placed alternately on the two surfaces of the substrate and the vertical vias connecting traces. Compared with previous published two-dimensional miniaturized elements, the transmission curves indicate a significant size reduction (1/26 wavelengths at the resonant frequency) and exhibit good angular and polarization stabilities. Furthermore, a general equivalent circuit model is established to provide direct physical insight into the operating principle of this FSS. A prototype of the proposed FSS has been fabricated and measured, and the results validate this design.


1999 ◽  
Vol 121 (3) ◽  
pp. 499-509 ◽  
Author(s):  
S. A. Khalid ◽  
A. S. Khalsa ◽  
I. A. Waitz ◽  
C. S. Tan ◽  
E. M. Greitzer ◽  
...  

This paper presents a new methodology for quantifying compressor endwall blockage and an approach, using this quantification, for defining the links between design parameters, flow conditions, and the growth of blockage due to tip clearance flow. Numerical simulations, measurements in a low-speed compressor, and measurements in a wind tunnel designed to simulate a compressor clearance flow are used to assess the approach. The analysis thus developed allows predictions of endwall blockage associated with variations in tip clearance, blade stagger angle, inlet boundary layer thickness, loading level, loading profile, solidity, and clearance jet total pressure. The estimates provided by this simplified method capture the trends in blockage with changes in design parameters to within 10 percent. More importantly, however, the method provides physical insight into, and thus guidance for control of, the flow features and phenomena responsible for compressor endwall blockage generation.


Silicon ◽  
2021 ◽  
Author(s):  
Sahil Singh ◽  
P. S. T. N. Srinivas ◽  
Arun Kumar ◽  
Pramod Kumar Tiwari

Author(s):  
Fabio Lingua ◽  
Andrea Richaud ◽  
Vittorio Penna

Motivated by the importance of entanglement and correlation indicators in the analysis of quantum systems, we study the equilibrium and the residual entropy in a two-species Bose Hubbard dimer when the spatial phase separation of the two species takes place. We consider both the zero and non-zero-temperature regime. We present different kinds of residual entropies (each one associated to a different way of partitioning the system), and we show that they strictly depend on the specific quantum phase characterizing the two species (supermixed, mixed or demixed) even at finite temperature. To provide a deeper physical insight into the zero-temperature scenario, we apply the fully-analytical variational approach based on su(2) coherent states and provide a considerbly good approximation of the entanglement entropy. Finally, we show that the effectiveness of residual entropy as a critical indicator at non-zero temperature is unchanged when considering a restricted combination of energy eigenstates.


Author(s):  
Matthew P. Castanier ◽  
Yung-Chang Tan ◽  
Christophe Pierre

Abstract In this paper, a technique is presented for improving the efficiency of the Craig-Bampton method of Component Mode Synthesis (CMS). An eigenanalysis is performed on the partitions of the CMS mass and stiffness matrices that correspond to the so-called constraint modes. The resultant eigenvectors are referred to as “characteristic constraint modes,” since they represent the characteristic motion of the interface between the component structures. By truncating the characteristic constraint modes, a CMS model with a highly-reduced number of degrees of freedom may be obtained. An example of a cantilever plate is considered. It is shown that relatively few characteristic constraint modes are needed to yield accurate approximations of the lower natural frequencies. This method also provides physical insight into the mechanisms of vibration transmission in complex structures.


Sign in / Sign up

Export Citation Format

Share Document