scholarly journals Self-generated quantum gauge fields in arrays of Rydberg atoms

Author(s):  
Simon Ohler ◽  
Maximilian Kiefer-Emmanouilidis ◽  
Antoine Browaeys ◽  
Hans Peter Buechler ◽  
Michael Fleischhauer

Abstract As shown in recent experiments [V. Lienhard et al., Phys. Rev. X 10, 021031 (2020)], spin-orbit coupling in systems of Rydberg atoms can give rise to density-dependent Peierls Phases in second-order hoppings of Rydberg spin excitations and nearest-neighbor (NN) repulsion. We here study theoretically a one-dimensional zig-zag ladder system of such spin-orbit coupled Rydberg atoms at half filling. The second-order hopping is shown to be associated with an effective gauge field, which in mean-field approximation is static and homogeneous. Beyond the mean-field level the gauge potential attains a transverse quantum component whose amplitude is dynamical and linked to density modulations. We here study the effects of this to the possible ground-state phases of the system. In a phase where strong repulsion leads to a density wave, we find that as a consequence of the induced quantum gauge field a regular pattern of current vortices is formed. However also in the absence of density-density interactions the quantum gauge field attains a non-vanishing amplitude. Above a certain critical strength of the second-order hopping the energy gain due to gauge-field induced transport overcomes the energy cost from the associated build-up of density modulations leading to a spontaneous generation of the quantum gauge field.

1996 ◽  
Vol 05 (02) ◽  
pp. 303-311 ◽  
Author(s):  
T.T.S. KUO ◽  
S. RAY ◽  
J. SHAMANNA ◽  
R.K. SU

We study a cubic lattice gas model for nuclear matter where each lattice site can be either occupied, by one proton or one neutron, or unoccupied. A nearest-neighbor interaction of the form - ∑<ij>Jijτziτzj is assumed. Our model is an isospin-1 Ising model, with τz= (1, 0, –1) representing respectively (proton, vacancy, neutron). A kinetic-energy term has been included in our model. Under the Bragg-Williams mean-field approximation our model exhibits the existence of a dense phase (liquid-like) and a rare phase (gas-like). The nuclear-matter p−v isotherms given by our model are discussed.


2009 ◽  
Vol 23 (24) ◽  
pp. 4963-4976 ◽  
Author(s):  
A. BENYOUSSEF ◽  
A. EL KENZ ◽  
M. EL YADARI ◽  
M. LOULIDI

A mean-field approximation is developed for a decorated ferrimagnetic Ising model, in which the two magnetic atoms A and B have spins σ=1/2 and S=1, respectively. In this system, the exchange interaction between nearest-neighbors of atom B is taken into account. Some interesting phenomena, such as the appearance of three types of phase diagrams and the existence of one and two compensation points are found. Phase diagrams and temperature dependence of the magnetizations of the system are investigated in detail.


1997 ◽  
Vol 11 (13) ◽  
pp. 565-570
Author(s):  
G. L. S. Paula ◽  
W. Figueiredo

We have applied the Glauber and Metropolis prescriptions to investigate the stationary states of the Ising model in one and two dimensions. We have employed the formalism of the master equation to follow the evolution of the system towards the stationary states. Although the Glauber and Metropolis transition rates lead the system to the same equilibrium states for the Ising model in the Monte Carlo simulations, we show that they can predict different results if we disregard the correlations between spins. The critical temperature of the one-dimensional Ising model cannot even be found by using the Metropolis algorithm and the mean field approximation. However, taking into account only correlations between nearest neighbor spins, the resulting stationary states become identical for both Glauber and Metropolis transition rates.


1994 ◽  
Vol 08 (19) ◽  
pp. 1195-1200 ◽  
Author(s):  
V. L. SAFONOV ◽  
A. V. ROZHKOV

The hypothesis that conduction electrons in a one-dimensional crystal obey para-Fermi statistics is discussed. Thermal properties of Fröhlich's model in the mean-field approximation are calculated within the framework of this hypothesis. It is shown that the temperature of the phase transition to a charge density wave state is greater in a system with parastatistics.


2003 ◽  
Vol 10 (02n03) ◽  
pp. 189-194
Author(s):  
Min Kang ◽  
Makoto Kaburagi

We theoretically investigate the fcc(110) surfaces with missing row reconstructions induced by adatoms using the Blume–Emmery–Griffith (BEG) model. In the model, Kij is introduced to denote interactions between surface atoms and Jij to describe interactions between dipoles. The investigation by the mean field approximation has predicted that there appear modulated phases on the surfaces as the next-nearest-neighbor (NNN) and the nearest-neighbor (NN) interactions along the [001] direction become competitive. In this study, Monte Carlo simulations are performed to confirm the prediction. A correlation function defined by concentration operators in wave vector q space is calculated. The results show that the concentration modulations appear. The temperature versus the ratio of the NNN interaction K2 to the NN interaction K1 phase diagram is obtained. The possible features of the modulated phases in experiments are discussed.


2021 ◽  
Author(s):  
Cade Spaulding ◽  
Hamid Teimouri ◽  
S.L. Narasimha ◽  
Anatoly B. Kolomeisky

Motor proteins, also known as biological molecular motors, play important roles in various intracellular processes. Experimental investigations suggest that molecular motors interact with each other during the cellular transport, but the nature of such interactions remains not well understood. Stimulated by these observations, we present a theoretical study aimed to understand the effect of the range of interactions on dynamics of interacting molecular motors. For this purpose, we develop a new version of the totally asymmetric simple exclusion processes in which nearest-neighbor as well as the next nearest-neighbor interactions are taken into account in a thermodynamically consistent way. A theoretical framework based on a cluster mean-field approximation, which partially takes correlations into account, is developed to evaluate the stationary properties of the system. It is found that fundamental current-density relations in the system strongly depend on the strength and the sign of interactions, as well as on the range of interactions. For repulsive interactions stronger than some critical value, increasing the range of interactions leads to a change from unimodal to trimodal dependence in the flux-density fundamental diagram. Theoretical calculations are tested with extensive Monte Carlo computer simulations. Although in most ranges of parameters excellent agreement between theoretical predictions and computer simulations is observed, there are situations when the cluster mean-field approach fails to describe properly the dynamics in the system. Theoretical arguments to explain these observations are presented. Our theoretical analysis clarifies the microscopic picture of how the range of interactions influences the dynamics of interacting molecular motors.


Atoms ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 58
Author(s):  
Zlatko Koinov

Motivated by recent developments in the experimental study of ultracold atoms in graphene-like honeycomb optical lattices, we investigate superconductivity of the attractive Kane-Mele-Habbard (KMH) model with the next-nearest-neighbor (NNN) hoping at half filling. The mean-field approximation is used to study the phase diagram which interpolates the trivial and the non-trivial topological states. It is shown that: (a) when the NNN hoping is taken into account, one has to introduce two mean-field gap equations for the two sublattices, instead of a single gap when the NNN hopping is neglected, and (b) in the non-trivial topological region the phase diagram with the NNN hopping is significantly different compared to the phase diagram calculated previously, but without the NNN term. We also discuss the superconducting instability of the attractive KMH model that is driven by condensation of Cooperons.


2010 ◽  
Vol 21 (06) ◽  
pp. 825-837 ◽  
Author(s):  
MINGZHE LIU ◽  
RUILI WANG ◽  
RUI JIANG

This paper studies asymmetric exclusion processes on a microtubule-like system with two species of particles. The model is motivated by the structure of microtubules and kinesins and dyneins moving along microtubules in opposite directions. The proposed model is similar to that in J. Phys. A40, 2275 (2007) in which two-channel TASEPs with narrow entrances and parallel update are studied. This paper extended the above-mentioned work to a multiple-channel hollow cylinder case. Thus, each channel has two nearest neighbors in our model. The corresponding rule for narrow entrances is that particles cannot enter the system if either of two nearest-neighbor sites on neighboring channels is occupied by the other species of particles. The phase diagram of the model is obtained from a mean-field approximation and verified by computer simulations. It is shown that the spontaneous symmetry breaking exists with two asymmetric phases: high/low density and low/low density. The flipping process of particles is observed. Bulk density and particle currents are computed. Monte Carlo simulation results deviate from the mean-field prediction when entrance rate α is high, which is due to neglecting correlations among particles in mean-field calculations. The results are also compared with that obtained from two-channel system with one neighbor narrow entrance in parallel update.


2021 ◽  
Vol 6 (2) ◽  
pp. 16
Author(s):  
Luca Dell’Anna ◽  
Stefano Grava

We review the study of the superfluid phase transition in a system of fermions whose interaction can be tuned continuously along the crossover from Bardeen–Cooper–Schrieffer (BCS) superconducting phase to a Bose–Einstein condensate (BEC), also in the presence of a spin–orbit coupling. Below a critical temperature the system is characterized by an order parameter. Generally a mean field approximation cannot reproduce the correct behavior of the critical temperature Tc over the whole crossover. We analyze the crucial role of quantum fluctuations beyond the mean-field approach useful to find Tc along the crossover in the presence of a spin–orbit coupling, within a path integral approach. A formal and detailed derivation for the set of equations useful to derive Tc is performed in the presence of Rashba, Dresselhaus and Zeeman couplings. In particular in the case of only Rashba coupling, for which the spin–orbit effects are more relevant, the two-body bound state exists for any value of the interaction, namely in the full crossover. As a result the effective masses of the emerging bosonic excitations are finite also in the BCS regime.


2004 ◽  
Vol 11 (01) ◽  
pp. 57-70 ◽  
Author(s):  
E. E. MOLA ◽  
D. A. KING ◽  
I. M. IRURZUN ◽  
M. RAFTI ◽  
J. L. VICENTE

In this paper we apply a model of surface chemical reactions to describe pattern formation in the CO oxidation on Pt(100). The model is an extended mean field approximation (EMFA), where two coupling processes are included: gas global coupling (to take into account the mass chemical reaction balance) and CO diffusion. The surface is divided into M×M cells; inside each of them the mean field approximation (MFA) is fulfilled. Anisotropic diffusion between nearest neighbor cells and gas coupling among all cells are also allowed. The EMFA goes beyond the traditional reaction–diffusion approaches with Fickian terms, in favor of a more general mass balance equation that consistently incorporates the coupling between CO diffusion and the nonlinear phase transition of the substrate. In this paper we study three different cases: (a) homogeneous coverage oscillations — when CO and O 2 partial pressures are kept constant and the whole set of M×M cells have the same value of partial coverages and phase fractions; in this case the system exhibits self-oscillations, such as those experimentally observed; (b) inhomogeneous coverage oscillations — when CO and O 2 partial pressures are kept constant and inhomogeneities of coverage are present; the system evolves by CO diffusion between nearest neighbor cells; (c) gas global coupling — when gas global coupling is allowed and inhomogeneities of coverage are present, there are oscillations in the gas phase that follow the surface evolution.


Sign in / Sign up

Export Citation Format

Share Document