scholarly journals f(R) dual theories of quintessence: expansion-collapse duality

2021 ◽  
Vol 2021 (12) ◽  
pp. 016
Author(s):  
Dipayan Mukherjee ◽  
H.K. Jassal ◽  
Kinjalk Lochan

Abstract The accelerated expansion of the universe demands presence of an exotic matter, namely the dark energy. Though the cosmological constant fits this role very well, a scalar field minimally coupled to gravity, or quintessence, can also be considered as a viable alternative for the cosmological constant. We study f(R) gravity models which can lead to an effective description of dark energy implemented by quintessence fields in Einstein gravity, using the Einstein frame-Jordan frame duality. For a family of viable quintessence models, the reconstruction of the f(R) function in the Jordan frame consists of two parts. We first obtain a perturbative solution of f(R) in the Jordan frame, applicable near the present epoch. Second, we obtain an asymptotic solution for f(R), consistent with the late time limit of the Einstein frame if the quintessence field drives the universe. We show that for certain class of viable quintessence models, the Jordan frame universe grows to a maximum finite size, after which it begins to collapse back. Thus, there is a possibility that in the late time limit where the Einstein frame universe continues to expand, the Jordan frame universe collapses. The condition for this expansion-collapse duality is then generalized to time varying equations of state models, taking into account the presence of non-relativistic matter or any other component in the Einstein frame universe. This mapping between an expanding geometry and a collapsing geometry at the field equation level may have interesting potential implications on the growth of perturbations therein at late times.

2012 ◽  
Vol 21 (12) ◽  
pp. 1230002 ◽  
Author(s):  
JAEWON YOO ◽  
YUKI WATANABE

Mounting observational data confirm that about 73% of the energy density consists of dark energy which is responsible for the current accelerated expansion of the Universe. We present observational evidences and dark energy projects. We then review various theoretical ideas that have been proposed to explain the origin of dark energy; they contain the cosmological constant, modified matter models, modified gravity models and the inhomogeneous model. The cosmological constant suffers from two major problems: one regarding fine-tuning and the other regarding coincidence. To solve them there arose modified matter models such as quintessence, k-essence, coupled dark energy and unified dark energy. We compare those models by presenting attractive aspects, new rising problems and possible solutions. Furthermore, we review modified gravity models that lead to late-time accelerated expansion without invoking a new form of dark energy; they contain f(R) gravity and the Dvali–Gabadadze–Porrati (DGP) model. We also discuss observational constraints on those models and on future modified gravity theories. Finally we review the inhomogeneous Lemaître–Tolman–Bondi (LTB) model that drops an assumption of the spatial homogeneity of the Universe. We also present basics of cosmology and scalar field theory, which are useful especially for students and novices to understand dark energy models.


Author(s):  
Michael Kachelriess

The contribution of vacuum fluctuations to the cosmological constant is reconsidered studying the dependence on the used regularisation scheme. Then alternative explanations for the observed accelerated expansion of the universe in the present epoch are introduced which either modify gravity or add a new component of matter, dubbed dark energy. The chapter closes with some comments on attempts to quantise gravity.


2014 ◽  
Vol 92 (9) ◽  
Author(s):  
P.K. SAHOO ◽  
B. Mishra

A five dimensional Kaluza-Klein space time is considered with wet dark fluid (WDF) source in the framework of f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor proposed by Harko et al. (Phys. Rev. D \textbf{84}, 024020, (2011)). A new equation of state in the form of WDF has been used for dark energy (DE) component of the universe. It is modeled on the equation of state p=\omega(\rho-\rho^*) which can be describing a liquid, for example water. The exact solutions to the corresponding field equations are obtained for power law and exponential law of the volumetric expansion. The geometrical and physical parameters for both the models are studied. The model obtained here may represent the inflationary era in the early universe and the very late time of the universe. This model obtained here shows that even in the presence of wet dark fluid, the universe indicates accelerated expansion of the universe.


2014 ◽  
Vol 92 (9) ◽  
pp. 1062-1067 ◽  
Author(s):  
P. K. Sahoo ◽  
B. Mishra

In this paper, we have investigated the five-dimensional Kaluza–Klein space time with wet dark fluid (WDF), which is a candidate for dark energy (DE), in the framework of f(R, T) gravity. R and T denote the Ricci scalar and the trace of the energy–momentum tensor, respectively (Harko et al. Phys. Rev. D, 84, 024020 (2011)). We have used equation of state in the form of WDF for the DE component of the universe. It is modeled on the equation of state p = ω(ρ – ρ*). With the help of the power law and exponential law of volumetric expansion, we have derived the exact solutions of the corresponding field equations. The geometrical and physical parameters for both the models are studied. The model obtained here may represent the inflationary era in the early universe and very late time of the universe. It is concluded that the model obtained here shows that even in the presence of WDF, the universe indicates accelerated expansion of the universe.


2016 ◽  
Vol 25 (02) ◽  
pp. 1650025 ◽  
Author(s):  
Giovanni Otalora

Although equivalent to general relativity, teleparallel gravity (TG) is conceptually speaking a completely different theory. In this theory, the gravitational field is described by torsion, not by curvature. By working in this context, a new model is proposed in which the four-derivative of a canonical scalar field representing dark energy is nonminimally coupled to the “vector torsion”. This type of coupling is motivated by the fact that a scalar field couples to torsion through its four-derivative, which is consistent with local spacetime kinematics regulated by the de Sitter group [Formula: see text]. It is found that the current state of accelerated expansion of the universe corresponds to a late-time attractor that can be (i) a dark energy-dominated de Sitter solution ([Formula: see text]), (ii) a quintessence-type solution with [Formula: see text], or (iii) a phantom-type [Formula: see text] dark energy.


2019 ◽  
Vol 32 (3) ◽  
pp. 338-352
Author(s):  
Albert Zur (Albo)

In the proposed Energy String (ES) theory, we assume the existence of fundamental energy strings forming a generally Euclidean four-dimensional fabric of empty space as well as forming all types of particles in the universe. The 4D space fabric is composed of space energy strings bearing dark-energy as well as a newly described dark-momentum. Particles are composed of particle energy strings which interact with space energy strings inducing three-dimensional space curvatures embedded in a flat fourth-space dimension. The induced space curvatures are responsible for gravity of particles and assign a longitudinal and a transverse direction to particles. The proposed ES theory yields an adapted model of the universe with remarkable teachings as follows: (1) The fabric of space and related dark-energy are associated with a newly defined dark-momentum. This dark momentum is the sole contributor to the cosmological constant Λ in Einstein's field equations which describes the accelerated expansion of the universe. The energy of the quantum vacuum becomes nonrelevant to the cosmological constant Λ, enabling a solution to the “Cosmological Constant Problem”; (2) All particles perform an equal distance of translatory displacement in 4D-space, reflecting a universal displacement rate of particles relative to an absolute generally Euclidean 4D-space. This universal principle is equivalent to Lorentz transformation of a fundamental four-displacement vector, representing a new model of Special Relativity with superior compatibility to quantum theories. (3) Time is a displacement property of mass particles in 4D-space. Frames of 3D-space+time are the perspective by which mass particles experience 4D-space. In this perspective, absolute space longitudinally displaces over mass particles experienced as proper time elapse. Temporal momentum is an inherent invariant property of mass particles. Frames of 3D-space+time are mixed domains: three spatial coordinates of position-space and a temporal coordinate of momentum-space, meaning the position-space in the temporal coordinate is totally inaccessible.


2010 ◽  
Vol 19 (03) ◽  
pp. 367-394 ◽  
Author(s):  
ISHWAREE P. NEUPANE ◽  
HOLLY TROWLAND

Dark energy is some of the weirdest and most mysterious stuff in the universe that tends to increase the rate of expansion of the universe. Two commonly known forms of dark energy are the cosmological constant, a constant energy density filling space homogeneously, and scalar fields such as quintessence or moduli whose energy density can vary with time. We explore one particular model for dynamic dark energy: quintessence driven by a scalar dilaton field. We propose an ansatz for the form of the dilaton field, |ϕ(a)|mP ≡ α1 ln t + α2tn = α ln a + βa2ζ, where a is the scale factor and α and ζ are parameters of the model. This phenomenological ansatz for ϕ can be motivated by generic solutions of a scalar dilaton field in many effective string theory and string-inspired gravity models in four dimensions. Most of the earlier discussions in the literature correspond to the choice that ζ = 0 so that ϕ(t) ∝ ln t or ϕ(t) ∝ ln a(t). Using a compilation of current data including type Ia supernovae, we impose observational constraints on the slope parameters like α and ζ and then discuss the relation of our results to analytical constraints on various cosmological parameters, including the dark energy equation of state. Some useful constraints are imposed on model parameters like α and ζ as well as on the dark energy/dark matter couplings using results from structure formation. The constraints of this model are shown to encompass the cosmological constant limit within 1σ error bars.


2004 ◽  
Vol 19 (06) ◽  
pp. 449-456 ◽  
Author(s):  
BEILI WANG ◽  
HONGYA LIU ◽  
LIXIN XU

Recent observations of Type Ia supernovae provide evidence for the acceleration of our universe, which leads to the possibility that the universe is entering an inflationary epoch. We simulate it under a "big bounce" model, which contains a time variable cosmological "constant" that is derived from a higher dimension and manifests itself in 4D spacetime as dark energy. By properly choosing the two arbitrary functions contained in the model, we obtain a simple exact solution in which the evolution of the universe is divided into several stages. Before the big bounce, the universe contracts from a Λ-dominated vacuum, and after the bounce, the universe expands. In the early time after the bounce, the expansion of the universe is decelerating. In the late time after the bounce, dark energy (i.e. the variable cosmological "constant") overtakes dark matter and baryons, and the expansion enters an accelerating stage. When time tends to infinity, the contribution of dark energy tends to two thirds of the total energy density of the universe, qualitatively in agreement with observations.


Universe ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. 78 ◽  
Author(s):  
Paulo M. Sá

The generalized hybrid metric-Palatini theory of gravity admits a scalar-tensor representation in terms of two interacting scalar fields. We show that, upon an appropriate choice of the interaction potential, one of the scalar fields behaves like dark energy, inducing a late-time accelerated expansion of the universe, while the other scalar field behaves like pressureless dark matter that, together with ordinary baryonic matter, dominates the intermediate phases of cosmic evolution. This unified description of dark energy and dark matter gives rise to viable cosmological solutions, which reproduce the main features of the evolution of the universe.


2017 ◽  
Vol 26 (12) ◽  
pp. 1743002
Author(s):  
T. Padmanabhan ◽  
Hamsa Padmanabhan

Gravity controls the amount of information that is accessible to any specific observer. We quantify the notion of cosmic information (‘CosmIn’) for the case of an eternal observer in the universe. Demanding the finiteness of CosmIn requires the universe to have a late-time accelerated expansion phase. Combined with some generic features of the quantum structure of spacetime, this leads to the determination of (i) the numerical value of the cosmological constant, as well as (ii) the amplitude of the primordial, scale invariant perturbation spectrum in terms of a single free parameter, which specifies the energy scale at which the universe makes a transition from a pre-geometric phase to the classical phase. This formalism also shows that the quantum gravitational information content of spacetime can be tested by using precision cosmology.


Sign in / Sign up

Export Citation Format

Share Document