scholarly journals A novel teleparallel dark energy model

2016 ◽  
Vol 25 (02) ◽  
pp. 1650025 ◽  
Author(s):  
Giovanni Otalora

Although equivalent to general relativity, teleparallel gravity (TG) is conceptually speaking a completely different theory. In this theory, the gravitational field is described by torsion, not by curvature. By working in this context, a new model is proposed in which the four-derivative of a canonical scalar field representing dark energy is nonminimally coupled to the “vector torsion”. This type of coupling is motivated by the fact that a scalar field couples to torsion through its four-derivative, which is consistent with local spacetime kinematics regulated by the de Sitter group [Formula: see text]. It is found that the current state of accelerated expansion of the universe corresponds to a late-time attractor that can be (i) a dark energy-dominated de Sitter solution ([Formula: see text]), (ii) a quintessence-type solution with [Formula: see text], or (iii) a phantom-type [Formula: see text] dark energy.

2012 ◽  
Vol 07 ◽  
pp. 174-183
Author(s):  
DAO-JUN LIU ◽  
BIN YANG ◽  
XING-HUA JIN

We study the cosmological dynamics of Brans-Dicke theory in which there are fermions with a coupling to BD scalar field as well as a self-interaction potential. The conditions that there exists a solution which is stable and represents a late-time accelerated expansion of the universe are found. It is shown that the late-time acceleration depends completely on the self-interaction of the fermion field if our investigation is restricted to the theory with positive BD parameter ω. Provided a negative ω is allowed, there will be another two class of stable solutions describing late-time accelerated expansion of the universe. Besides, we find that chameleon mechanism will be possessed in our theory when a suitable self-interaction of fermion field is considered.


Universe ◽  
2020 ◽  
Vol 6 (6) ◽  
pp. 78 ◽  
Author(s):  
Paulo M. Sá

The generalized hybrid metric-Palatini theory of gravity admits a scalar-tensor representation in terms of two interacting scalar fields. We show that, upon an appropriate choice of the interaction potential, one of the scalar fields behaves like dark energy, inducing a late-time accelerated expansion of the universe, while the other scalar field behaves like pressureless dark matter that, together with ordinary baryonic matter, dominates the intermediate phases of cosmic evolution. This unified description of dark energy and dark matter gives rise to viable cosmological solutions, which reproduce the main features of the evolution of the universe.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012058
Author(s):  
Yerlan Myrzakulov ◽  
Sabit Bekov ◽  
Kairat Myrzakulov

Abstract In this work, we consider a homogeneous and isotropic cosmological model of the universe in f (T, B) gravity with non-minimally coupled fermionic field. In order to find the form of the coupling function F(Ψ), the potential function V (Ψ) of the fermionic field and the function f (T, B), we found through the Noether symmetry approach. The results obtain are coincide with the observational data that describe the late-time accelerated expansion of the universe.


2020 ◽  
Vol 98 (12) ◽  
pp. 1119-1124
Author(s):  
T. Mirzaei Rezaei ◽  
Alireza Amani ◽  
E. Yusofi ◽  
S. Rouhani ◽  
M.A. Ramzanpour

In this paper, we study the [Formula: see text] gravity model in the presence of bulk viscosity by the flat Friedmann–Robertson–Walker metric. The field equation is obtained by teleparallel gravity with a tetrad field. The universe components are considered matter and dark energy, with the dark energy component associated with viscous [Formula: see text] gravity. After calculating the Friedmann equations, we obtain the energy density, pressure, and equation of state of dark energy in terms of the redshift parameter. Afterward, we plot the corresponding cosmological parameters versus the redshift parameter and examine the accelerated expansion of the universe. In the end, we explore the system stability using a function called the speed sound parameter.


2020 ◽  
Vol 98 (11) ◽  
pp. 993-998
Author(s):  
K. Deniel Raju ◽  
M.P.V.V. Bhaskara Rao ◽  
Y. Aditya ◽  
T. Vinutha ◽  
D.R.K. Reddy

This study is mainly concerned with a spatially homogeneous and anisotropic Kantowski–Sachs cosmological model with anisotropic dark energy fluid and massive scalar field. We solve the field equations using (i) the shear scalar proportionality to the expansion scalar and (ii) a mathematical condition that is a consequence of the power law between the scalar field and the average scale factor of the universe, and the corresponding dark energy model is presented. The cosmological parameters of the model are computed and discussed, as well as the relevance of its dynamical aspects to the recent scenario of the accelerated expansion of the universe.


2012 ◽  
Vol 21 (12) ◽  
pp. 1250083 ◽  
Author(s):  
K. KARAMI ◽  
M. S. KHALEDIAN

We reconstruct different f(R)-gravity models corresponding to the polytropic, standard Chaplygin, generalized Chaplygin, modified Chaplygin and modified variable Chaplygin gas dark energy (DE) models. We also obtain the equation of state (EoS) parameters of the corresponding f(R)-gravity models which describe the accelerated expansion of the universe. We conclude that although the EoS parameters of the obtained f(R)-gravities can behave like phantom or quintessence DE models, they cannot justify the transition from the quintessence state to the phantom regime. Furthermore, the polytropic and Chaplygin f(R)-gravity models in de Sitter space can satisfy the inflation condition.


2009 ◽  
Vol 5 (H15) ◽  
pp. 303-303
Author(s):  
N. J. Nunes ◽  
T. Dent ◽  
C. J. A. P. Martins ◽  
G. Robbers

A popular candidate of dark energy, currently driving an accelerated expansion of the universe, is a slowly rolling scalar field or quintessence. A scalar field, however, must couple with other sources of matter. Consequently, its dynamical evolution can result in extra interactions between standard particles, which are mediated by the field, and to a variation in the fundamental parameters. Curiously, it has been reported that observations of a number of quasar absorption lines suggest that the fine structure constant was smaller in the past, at redshifts in the range z=1-3 (Murphy et al. (2003), Murphy et al. (2004), but see also Srianand et al. (2007)). Could this indeed be the signature of a slowly evolving scalar field?


2013 ◽  
Vol 91 (1) ◽  
pp. 54-59 ◽  
Author(s):  
F. Adabi ◽  
K. Karami ◽  
M. Mousivand

We investigate the correspondence between the ghost and Chaplygin scalar field dark energy models in the framework of Einstein gravity. We consider a spatially nonflat Friedmann–Robertson–Walker universe containing dark energy that interacts with dark matter. We reconstruct the potential and the dynamics for the Chaplygin scalar field model according to the evolutionary behavior of ghost dark energy, which can describe the phantomic accelerated expansion of the universe.


2018 ◽  
Vol 15 (04) ◽  
pp. 1850063 ◽  
Author(s):  
Ines G. Salako ◽  
Abdul Jawad ◽  
Hooman Moradpour

After reviewing the [Formula: see text] gravity, in which [Formula: see text] is the torsion scalar and [Formula: see text] is the trace of the energy-momentum tensor, we refer to two cosmological models of this theory in agreement with observational data. Thereinafter, we consider a flat Friedmann–Robertson–Walker (FRW) universe filled by a pressureless source and look at the terms other than the Einstein terms in the corresponding Friedmann equations, as the dark energy (DE) candidate. In addition, some cosmological features of models, including equation of states and deceleration parameters, are addressed helping us in getting the accelerated expansion of the universe in quintessence era. Finally, we extract the scalar field as well as potential of quintessence, tachyon, K-essence and dilatonic fields for both [Formula: see text] models. It is observed that the dynamics of scalar field as well as the scalar potential of these models indicate an accelerated expanding universe in these models.


2013 ◽  
Vol 91 (12) ◽  
pp. 1090-1092
Author(s):  
V. Fayaz ◽  
F. Felegary ◽  
H. Hossienkhani

Motivated by the work of Karami and Fehri (Phys. Lett. B, 684, 61 (2010)). We generalize their work with varying G. We investigate the new holographic dark energy model with varying G. We consider a spatially nonflat universe containing interacting new holographic dark energy with pressureless dark matter. We obtain the equation of state and the deceleration parameters. Also we reconstruct ωA for a = a0tn and H = [β/(α − 1)](1/t) in the late time universe. We also obtain q for a = a0tn and H = [β/(α − 1)](1/t) in the present time universe, which describes accelerated expansion of the universe.


Sign in / Sign up

Export Citation Format

Share Document