scholarly journals Protein–protein interactions: organization, cooperativity and mapping in a bottom-up Systems Biology approach

2005 ◽  
Vol 2 (2) ◽  
pp. S24-S35 ◽  
Author(s):  
Ozlem Keskin ◽  
Buyong Ma ◽  
Kristina Rogale ◽  
K Gunasekaran ◽  
Ruth Nussinov
Proteomes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 14 ◽  
Author(s):  
Emmalyn J. Dupree ◽  
Madhuri Jayathirtha ◽  
Hannah Yorkey ◽  
Marius Mihasan ◽  
Brindusa Alina Petre ◽  
...  

Proteomics is the field of study that includes the analysis of proteins, from either a basic science prospective or a clinical one. Proteins can be investigated for their abundance, variety of proteoforms due to post-translational modifications (PTMs), and their stable or transient protein–protein interactions. This can be especially beneficial in the clinical setting when studying proteins involved in different diseases and conditions. Here, we aim to describe a bottom-up proteomics workflow from sample preparation to data analysis, including all of its benefits and pitfalls. We also describe potential improvements in this type of proteomics workflow for the future.


Parasitology ◽  
2012 ◽  
Vol 139 (9) ◽  
pp. 1103-1118 ◽  
Author(s):  
J. M. WASTLING ◽  
S. D. ARMSTRONG ◽  
R. KRISHNA ◽  
D. XIA

SUMMARYSystems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types.


2014 ◽  
Vol 8 ◽  
pp. BBI.S13462 ◽  
Author(s):  
Muhammad Naseem ◽  
Meik Kunz ◽  
Thomas Dandekar

Plant hormones involving salicylic acid (SA), jasmonic acid (JA), ethylene (Et), and auxin, gibberellins, and abscisic acid (ABA) are known to regulate host immune responses. However, plant hormone cytokinin has the potential to modulate defense signaling including SA and JA. It promotes plant pathogen and herbivore resistance; underlying mechanisms are still unknown. Using systems biology approaches, we unravel hub points of immune interaction mediated by cytokinin signaling in Arabidopsis. High-confidence Arabidopsis protein—protein interactions (PPI) are coupled to changes in cytokinin-mediated gene expression. Nodes of the cellular interactome that are enriched in immune functions also reconstitute sub-networks. Topological analyses and their specific immunological relevance lead to the identification of functional hubs in cellular interactome. We discuss our identified immune hubs in light of an emerging model of cytokinin-mediated immune defense against pathogen infection in plants.


2016 ◽  
Vol 26 (6) ◽  
pp. 389-400 ◽  
Author(s):  
Naveen Kumar ◽  
Sanjay Barua ◽  
Riyesh Thachamvally ◽  
Bhupendra Nath Tripathi

Systems biology refers to system-wide changes in biological components such as RNA/DNA (genomics), protein (proteomics) and lipids (lipidomics). In this review, we provide comprehensive information about morbillivirus replication. Besides discussing the role of individual viral/host proteins in virus replication, we also discuss how systems-level analyses could improve our understanding of morbillivirus replication, host-pathogen interaction, immune response and disease resistance. Finally, we discuss how viroinformatics is likely to provide important insights for understanding genome-genome, genome-protein and protein-protein interactions.


Life Sciences ◽  
2008 ◽  
Vol 83 (15-16) ◽  
pp. 521-530
Author(s):  
Yi Wang ◽  
Guoping Chen ◽  
Yuxin Yang ◽  
Zongli Hu ◽  
Xuqing Chen

Author(s):  
Sylvia Schleker ◽  
Seshan Ananthasubramanian ◽  
Judith Klein-Seetharaman ◽  
Madhavi K. Ganapathiraju

PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0145648 ◽  
Author(s):  
Ranjan Kumar Barman ◽  
Tanmoy Jana ◽  
Santasabuj Das ◽  
Sudipto Saha

Sign in / Sign up

Export Citation Format

Share Document