Transport of Jeffrey fluid in a rectangular slit of the microchannel under the effect of uniform reabsorption and a porous medium

Author(s):  
Hira Mehboob [email protected] ◽  
K. Maqbool ◽  
R. Ellahi ◽  
Sadiq M. Sait
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoyi Guo ◽  
Jianwei Zhou ◽  
Huantian Xie ◽  
Ziwu Jiang

The magnetohydrodynamic (MHD) peristaltic flow of the fractional Jeffrey fluid through porous medium in a nonuniform channel is presented. The fractional calculus is considered in Darcy’s law and the constitutive relationship which included the relaxation and retardation behavior. Under the assumptions of long wavelength and low Reynolds number, the analysis solutions of velocity distribution, pressure gradient, and pressure rise are investigated. The effects of fractional viscoelastic parameters of the generalized Jeffrey fluid on the peristaltic flow and the influence of magnetic field, porous medium, and geometric parameter of the nonuniform channel are presented through graphical illustration. The results of the analogous flow for the generalized second grade fluid, the fractional Maxwell fluid, are also deduced as special cases. The comparison among them is presented graphically.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 1059
Author(s):  
S. Sreenadh ◽  
B. Govindarajulu ◽  
A. N.S. Srinivas ◽  
R. Nageshwar Rao

The present study investigates fully developed free - convection Jeffrey fluid flow between two vertical plates with porous medium. The vertical plates are moving with same velocity but in opposite directions. The coupled nonlinear governing equations are solved by using the linearization technique. The solutions for velocity distribution, temperature distribution, skin friction and rate of heat transfer is obtained in the presence of porous medium by Iterative procedure.  Shooting technique with Runge - Kutta method of order four is proposed to compare the numerical results for velocity and temperature distribution. The numerical results obtained by both methods are compared and presented graphically. It is observed that an increase in the permeability parameter causes decrease in the fluid velocity and an increase in the Jeffrey fluid parameter causes an enhancement in the fluid velocity. The significance of various pertinent parameters like Grashof number, Prandtl number, Eckert number and the plate velocity are explained through graphs.  


Sign in / Sign up

Export Citation Format

Share Document