Link prediction based on a semi-local similarity index

2011 ◽  
Vol 20 (12) ◽  
pp. 128902 ◽  
Author(s):  
Meng Bai ◽  
Ke Hu ◽  
Yi Tang
2013 ◽  
Vol 27 (06) ◽  
pp. 1350039 ◽  
Author(s):  
JING WANG ◽  
LILI RONG

Link prediction in complex networks has attracted much attention recently. Many local similarity measures based on the measurements of node similarity have been proposed. Among these local similarity indices, the neighborhood-based indices Common Neighbors (CN), Adamic-Adar (AA) and Resource Allocation (RA) index perform best. It is found that the node similarity indices required only information on the nearest neighbors are assigned high scores and have very low computational complexity. In this paper, a new index based on the contribution of common neighbor nodes to edges is proposed and shown to have competitively good or even better prediction than other neighborhood-based indices especially for the network with low clustering coefficient with its high efficiency and simplicity.


2017 ◽  
Vol 28 (08) ◽  
pp. 1750101 ◽  
Author(s):  
Yabing Yao ◽  
Ruisheng Zhang ◽  
Fan Yang ◽  
Yongna Yuan ◽  
Qingshuang Sun ◽  
...  

In complex networks, the existing link prediction methods primarily focus on the internal structural information derived from single-layer networks. However, the role of interlayer information is hardly recognized in multiplex networks, which provide more diverse structural features than single-layer networks. Actually, the structural properties and functions of one layer can affect that of other layers in multiplex networks. In this paper, the effect of interlayer structural properties on the link prediction performance is investigated in multiplex networks. By utilizing the intralayer and interlayer information, we propose a novel “Node Similarity Index” based on “Layer Relevance” (NSILR) of multiplex network for link prediction. The performance of NSILR index is validated on each layer of seven multiplex networks in real-world systems. Experimental results show that the NSILR index can significantly improve the prediction performance compared with the traditional methods, which only consider the intralayer information. Furthermore, the more relevant the layers are, the higher the performance is enhanced.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Furqan Aziz ◽  
Haji Gul ◽  
Irfan Uddin ◽  
Georgios V. Gkoutos

AbstractLink prediction in a complex network is a problem of fundamental interest in network science and has attracted increasing attention in recent years. It aims to predict missing (or future) links between two entities in a complex system that are not already connected. Among existing methods, local similarity indices are most popular that take into account the information of common neighbours to estimate the likelihood of existence of a connection between two nodes. In this paper, we propose global and quasi-local extensions of some commonly used local similarity indices. We have performed extensive numerical simulations on publicly available datasets from diverse domains demonstrating that the proposed extensions not only give superior performance, when compared to their respective local indices, but also outperform some of the current, state-of-the-art, local and global link-prediction methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shicong Chen ◽  
Deyu Yuan ◽  
Shuhua Huang ◽  
Yang Chen

The goal of network representation learning is to extract deep-level abstraction from data features that can also be viewed as a process of transforming the high-dimensional data to low-dimensional features. Learning the mapping functions between two vector spaces is an essential problem. In this paper, we propose a new similarity index based on traditional machine learning, which integrates the concepts of common neighbor, local path, and preferential attachment. Furthermore, for applying the link prediction methods to the field of node classification, we have innovatively established an architecture named multitask graph autoencoder. Specifically, in the context of structural deep network embedding, the architecture designs a framework of high-order loss function by calculating the node similarity from multiple angles so that the model can make up for the deficiency of the second-order loss function. Through the parameter fine-tuning, the high-order loss function is introduced into the optimized autoencoder. Proved by the effective experiments, the framework is generally applicable to the majority of classical similarity indexes.


2019 ◽  
Vol 7 (5) ◽  
pp. 641-658 ◽  
Author(s):  
Zeynab Samei ◽  
Mahdi Jalili

Abstract Many real-world complex systems can be better modelled as multiplex networks, where the same individuals develop connections in multiple layers. Examples include social networks between individuals on multiple social networking platforms, and transportation networks between cities based on air, rail and road networks. Accurately predicting spurious links in multiplex networks is a challenging issue. In this article, we show that one can effectively use interlayer information to build an algorithm for spurious link prediction. We propose a similarity index that combines intralayer similarity with interlayer relevance for the link prediction purpose. The proposed similarity index is used to rank the node pairs, and identify those that are likely to be spurious. Our experimental results show that the proposed metric is much more accurate than intralayer similarity measures in correctly predicting the spurious links. The proposed method is an unsupervised method and has low computation complexity, and thus can be effectively applied for spurious link prediction in large-scale networks.


Sign in / Sign up

Export Citation Format

Share Document