Research of Local Similarity Index Based on OWA Integration Operator in Terrorist Network Link Prediction Method

Author(s):  
Tingting Li ◽  
Chengyi Zeng ◽  
Yuan Feng ◽  
Yu Zhang ◽  
Kaiqiang Wang
Author(s):  
Jingjing Xia ◽  
Guang Ling ◽  
Qingju Fan ◽  
Fang Wang ◽  
Ming-Feng Ge

Link prediction, aiming to find missing links in an observed network or predict those links that may occur in the future, has become a basic challenge of network science. Most existing link prediction methods are based on local or global topological attributes of the network such as degree, clustering coefficient, path index, etc. In the process of resource allocation, as the number of connections between the common neighbors of the paired nodes increases, it is easy to leak information through them. To overcome this problem, we proposed a new similarity index named ESHOPI (link prediction based on Dempster–Shafer theory and the importance of higher-order path index), which can prevent information leakage by penalizing ordinary neighbors and considering the information of the entire network and each node at the same time. In addition, high-order paths are used to improve the performance of link prediction by penalizing the longer reachable paths between the seed nodes. The effectiveness of ESHOPI is shown by the experiments on both synthetic and real-world networks.


2013 ◽  
Vol 27 (06) ◽  
pp. 1350039 ◽  
Author(s):  
JING WANG ◽  
LILI RONG

Link prediction in complex networks has attracted much attention recently. Many local similarity measures based on the measurements of node similarity have been proposed. Among these local similarity indices, the neighborhood-based indices Common Neighbors (CN), Adamic-Adar (AA) and Resource Allocation (RA) index perform best. It is found that the node similarity indices required only information on the nearest neighbors are assigned high scores and have very low computational complexity. In this paper, a new index based on the contribution of common neighbor nodes to edges is proposed and shown to have competitively good or even better prediction than other neighborhood-based indices especially for the network with low clustering coefficient with its high efficiency and simplicity.


2017 ◽  
Vol 5 (5) ◽  
pp. 446-461 ◽  
Author(s):  
Hongxing Yao ◽  
Yunxia Lu

Abstract In this paper, we analyze the 180 stocks which have the potential influence on the Shanghai Stock Exchange (SSE). First, we use the stock closing prices from January 1, 2005 to June 19, 2015 to calculate logarithmic the correlation coefficient and then build the stock market model by threshold method. Secondly, according to different networks under different thresholds, we find out the potential influence stocks on the basis of local structural centrality. Finally, by comparing the accuracy of similarity index of the local information and path in the link prediction method, we demonstrate that there are best similarity index to predict the probability for nodes connection in the different stock networks.


2011 ◽  
Vol 20 (12) ◽  
pp. 128902 ◽  
Author(s):  
Meng Bai ◽  
Ke Hu ◽  
Yi Tang

Author(s):  
Cong Li ◽  
Xinsheng Ji ◽  
Shuxin Liu ◽  
Haitao Li

Link prediction in temporal networks has always been a hot topic in both statistical physics and network science. Most existing works fail to consider the inner relationship between nodes, leading to poor prediction accuracy. Even though a wide range of realistic networks are temporal ones, few existing works investigated the properties of realistic and temporal networks. In this paper, we address the problem of abstracting individual attributes and propose a adaptive link prediction method for temporal networks based on [Formula: see text]-index to predict future links. The matching degree of nodes is first defined considering both the native influence and the secondary influence of local structure. Then a similarity index is designed using a decaying parameter to punish the snapshots with their occurring time. Experimental results on five realistic temporal networks observing consistent gains of 2–9% AUC in comparison to the best baseline in four networks show that our proposed method outperforms several benchmarks under two standard evaluation metrics: AUC and Ranking score. We also investigate the influence of the free parameter and the definition of matching degree on the prediction performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyed Hossein Jafari ◽  
Amir Mahdi Abdolhosseini-Qomi ◽  
Masoud Asadpour ◽  
Maseud Rahgozar ◽  
Naser Yazdani

AbstractThe entities of real-world networks are connected via different types of connections (i.e., layers). The task of link prediction in multiplex networks is about finding missing connections based on both intra-layer and inter-layer correlations. Our observations confirm that in a wide range of real-world multiplex networks, from social to biological and technological, a positive correlation exists between connection probability in one layer and similarity in other layers. Accordingly, a similarity-based automatic general-purpose multiplex link prediction method—SimBins—is devised that quantifies the amount of connection uncertainty based on observed inter-layer correlations in a multiplex network. Moreover, SimBins enhances the prediction quality in the target layer by incorporating the effect of link overlap across layers. Applying SimBins to various datasets from diverse domains, our findings indicate that SimBins outperforms the compared methods (both baseline and state-of-the-art methods) in most instances when predicting links. Furthermore, it is discussed that SimBins imposes minor computational overhead to the base similarity measures making it a potentially fast method, suitable for large-scale multiplex networks.


2017 ◽  
Vol 28 (08) ◽  
pp. 1750101 ◽  
Author(s):  
Yabing Yao ◽  
Ruisheng Zhang ◽  
Fan Yang ◽  
Yongna Yuan ◽  
Qingshuang Sun ◽  
...  

In complex networks, the existing link prediction methods primarily focus on the internal structural information derived from single-layer networks. However, the role of interlayer information is hardly recognized in multiplex networks, which provide more diverse structural features than single-layer networks. Actually, the structural properties and functions of one layer can affect that of other layers in multiplex networks. In this paper, the effect of interlayer structural properties on the link prediction performance is investigated in multiplex networks. By utilizing the intralayer and interlayer information, we propose a novel “Node Similarity Index” based on “Layer Relevance” (NSILR) of multiplex network for link prediction. The performance of NSILR index is validated on each layer of seven multiplex networks in real-world systems. Experimental results show that the NSILR index can significantly improve the prediction performance compared with the traditional methods, which only consider the intralayer information. Furthermore, the more relevant the layers are, the higher the performance is enhanced.


Sign in / Sign up

Export Citation Format

Share Document