Investigation of fission fragments average spin based on four dimensional Langevin dynamical model

2017 ◽  
Vol 41 (2) ◽  
pp. 024104
Author(s):  
D. Naderi ◽  
M. Salimi
2010 ◽  
Vol 19 (05n06) ◽  
pp. 813-824
Author(s):  
YOSHIHIRO ARITOMO

We analyzed experimental data obtained for the mass distribution of fission fragments in the reactions 36 S +238 U and 30 Si +238 U at several incident energies, which were performed by the JAEA group. Using the dynamical model with the Langevin equation, we precisely investigate the incident energy dependence of the mass distribution of fission fragments. We also consider the fine structures in the mass distribution of fission fragments caused by the nuclear structure at a low incident energy. It is explained why the mass distribution of fission fragments has different features in the two reactions. The fusion cross sections are also estimated.


2020 ◽  
Vol 29 (02) ◽  
pp. 2050007
Author(s):  
H. Eslamizadeh ◽  
M. Pirpour

A stochastic approach based on four-dimensional (4D) dynamical model has been used to simulate the fission process of the excited compound nuclei [Formula: see text]Fr, [Formula: see text]Fr and [Formula: see text]Fr produced in fusion reactions. Effects of isospin and dissipation coefficient of the [Formula: see text] coordinate, [Formula: see text], on estimation of the evaporation residue (ER) cross-section, the prescission neutron multiplicity, the variance of the mass and energy distributions of fission fragments and the anisotropy of fission fragments angular distribution have been investigated for the excited compound nuclei [Formula: see text]Fr, [Formula: see text]Fr and [Formula: see text]Fr. Three collective shape coordinates [Formula: see text] plus the projection of total spin of the compound nucleus to the symmetry axis, [Formula: see text], were considered in the 4D dynamical model. In the 4D dynamical model, the magnitude of the dissipation coefficient of [Formula: see text], [Formula: see text], was considered as a free parameter and its magnitude inferred by fitting measured data on the ER cross-section. Results of the extracted dissipation coefficients of [Formula: see text] for different isotopes of Fr were shown that the magnitude of the dissipation coefficient of [Formula: see text] increases with decreasing isospin of fissioning compound nucleus. It was also shown that the prescission neutron multiplicity and the anisotropy of fission fragments angular distribution increase with increasing isospin whereas the variance of the mass and energy distributions of fission fragments decrease with increasing isospin of fissioning compound nucleus. Furthermore, it was shown that the calculated values of prescission neutron multiplicity and the variance of the mass distribution of fission fragments for the excited compound nuclei [Formula: see text]Fr, [Formula: see text]Fr and [Formula: see text]Fr decrease with the dissipation strength of [Formula: see text], whereas the variance of the energy distribution of fission fragments and the anisotropy of fission fragments angular distribution increase with the dissipation strength of [Formula: see text].


Author(s):  
Dmitriy Krasnov ◽  
Vyacheslav Novoselsky

This work is devoted to the analysis of the possibility of constructing a dynamical model of a helicopter power supply system in the MATLAB SIMULINK program.


2020 ◽  
Vol 227 ◽  
pp. 02012
Author(s):  
R. S. Sidhu ◽  
R. J. Chen ◽  
Yu. A Litvinov ◽  
Y. H. Zhang ◽  

The re-analysis of experimental data on mass measurements of ura- nium fission products obtained at the ESR in 2002 is discussed. State-of-the-art data analysis procedures developed for such measurements are employed.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 341
Author(s):  
Shaobo He ◽  
Hayder Natiq ◽  
Santo Banerjee ◽  
Kehui Sun

By applying the Adams-Bashforth-Moulton method (ABM), this paper explores the complexity and synchronization of a fractional-order laser dynamical model. The dynamics under the variance of derivative order q and parameters of the system have examined using the multiscale complexity algorithm and the bifurcation diagram. Numerical simulation outcomes demonstrate that the system generates chaos with the decreasing of q. Moreover, this paper designs the coupled fractional-order network of laser systems and subsequently obtains its numerical solution using ABM. These solutions have demonstrated chimera states of the proposed fractional-order laser network.


2021 ◽  
Vol 812 ◽  
pp. 136017
Author(s):  
C. Schmitt ◽  
P. Möller

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 876
Author(s):  
Wieslaw Marszalek ◽  
Jan Sadecki ◽  
Maciej Walczak

Two types of bifurcation diagrams of cytosolic calcium nonlinear oscillatory systems are presented in rectangular areas determined by two slowly varying parameters. Verification of the periodic dynamics in the two-parameter areas requires solving the underlying model a few hundred thousand or a few million times, depending on the assumed resolution of the desired diagrams (color bifurcation figures). One type of diagram shows period-n oscillations, that is, periodic oscillations having n maximum values in one period. The second type of diagram shows frequency distributions in the rectangular areas. Each of those types of diagrams gives different information regarding the analyzed autonomous systems and they complement each other. In some parts of the considered rectangular areas, the analyzed systems may exhibit non-periodic steady-state solutions, i.e., constant (equilibrium points), oscillatory chaotic or unstable solutions. The identification process distinguishes the later types from the former one (periodic). Our bifurcation diagrams complement other possible two-parameter diagrams one may create for the same autonomous systems, for example, the diagrams of Lyapunov exponents, Ls diagrams for mixed-mode oscillations or the 0–1 test for chaos and sample entropy diagrams. Computing our two-parameter bifurcation diagrams in practice and determining the areas of periodicity is based on using an appropriate numerical solver of the underlying mathematical model (system of differential equations) with an adaptive (or constant) step-size of integration, using parallel computations. The case presented in this paper is illustrated by the diagrams for an autonomous dynamical model for cytosolic calcium oscillations, an interesting nonlinear model with three dynamical variables, sixteen parameters and various nonlinear terms of polynomial and rational types. The identified frequency of oscillations may increase or decrease a few hundred times within the assumed range of parameters, which is a rather unusual property. Such a dynamical model of cytosolic calcium oscillations, with mitochondria included, is an important model in which control of the basic functions of cells is achieved through the Ca2+ signal regulation.


Sign in / Sign up

Export Citation Format

Share Document