Signature of the 27-day variation in hemispheric sunspot activity and asymmetry during 2010–2015

2021 ◽  
Vol 21 (4) ◽  
pp. 106
Author(s):  
Prithvi Raj Singh ◽  
Ahmad Islam Saad Farid ◽  
Tarun Kumar Pant ◽  
Abhay Kumar Singh
Keyword(s):  
Geology ◽  
2017 ◽  
Vol 45 (10) ◽  
pp. e427-e427 ◽  
Author(s):  
Scott St. George ◽  
Richard J. Telford

2021 ◽  
Vol 44 ◽  
pp. 85-91
Author(s):  
V.N. Obridko ◽  
◽  
D.D. Sokoloff ◽  
V.V. Pipin ◽  
A.S. Shibalova ◽  
...  

In addition to the well-known 11-year cycle, longer and shorter characteristic periods can be isolated in variations of the parameters of helio-geophysical activity. Periods of about 36 and 60 years were revealed in variations of the geomagnetic activity and an approximately 60-year periodicity, in the evolution of correlation between the pressure in the lower atmosphere and the solar activity. Similar periods are observed in the cyclonic activity. Such periods in the parameters of the solar activity are difficult to identify because of a limited database available; however, they are clearly visible in variations of the asymmetry of the sunspot activity in the northern and southern solar hemispheres. In geomagnetic variations, one can also isolate oscillations with the characteristic periods of 5-6 years (QSO) and 2-3 years (QBO). We have considered 5-6-year periodicities (about half the main cycle) observed in variations of the sunspot numbers and the intensity of the dipole component of the solar magnetic field. A comparison with different magnetic dynamo models allowed us to determine the possible origin of these oscillations. A similar result can be reproduced in a dynamo model with nonlinear parameter variations. In this case, the activity cycle turns out to be anharmonic and contains other periodicities in addition to the main one. As a result of the study, we conclude that the 5-6-year activity variations are related to the processes of nonlinear saturation of the dynamo in the solar interior. Quasi-biennial oscillations are actually separate pulses related little to each other. Therefore, the methods of the spectral analysis do not reveal them over large time intervals. They are a direct product of local fields, are generated in the near-surface layers, and are reliably recorded only in the epochs of high solar activity.


2018 ◽  
Vol 610 ◽  
pp. A28 ◽  
Author(s):  
S. Mancuso ◽  
C. Taricco ◽  
P. Colombetti ◽  
S. Rubinetti ◽  
N. Sinha ◽  
...  

Typical reconstructions of historic heliospheric magnetic field (HMF) BHMF are based on the analysis of the sunspot activity, geomagnetic data or on measurement of cosmogenic isotopes stored in terrestrial reservoirs like trees (14C) and ice cores (10Be). The various reconstructions of BHMF are however discordant both in strength and trend. Cosmogenic isotopes, which are produced by galactic cosmic rays impacting on meteoroids and whose production rate is modulated by the varying HMF convected outward by the solar wind, may offer an alternative tool for the investigation of the HMF in the past centuries. In this work, we aim to evaluate the long-term evolution of BHMF over a period covering the past twenty-two solar cycles by using measurements of the cosmogenic 44Ti activity (τ1∕2 = 59.2 ± 0.6 yr) measured in 20 meteorites which fell between 1766 and 2001. Within the given uncertainties, our result is compatible with a HMF increase from 4.87-0.30+0.24 nT in 1766 to 6.83-0.11+0.13 nT in 2001, thus implying an overall average increment of 1.96-0.35+0.43 nT over 235 years since 1766 reflecting the modern Grand maximum. The BHMF trend thus obtained is then compared with the most recent reconstructions of the near-Earth HMF strength based on geomagnetic, sunspot number, and cosmogenic isotope data.


2006 ◽  
Vol 24 (6) ◽  
pp. 1567-1580 ◽  
Author(s):  
P. V. S. Rama Rao ◽  
S. Gopi Krishna ◽  
K. Niranjan ◽  
D. S. V. V. D. Prasad

Abstract. The scintillation data (S4-index) at the L-band frequency of 1.575GHz, recorded from a total of 18 GPS receivers installed at different locations in India under the GAGAN project, have provided us with a unique opportunity, for the first time in the Indian region, to make a simultaneous study of spatio-temporal and intensity characteristics of the trans-ionospheric scintillations during the 18-month, low sunspot activity (LSSA) period from January 2004 to July 2005. During this period, the occurrence of scintillations is found to be maximum around the pre-midnight hours of equinox months, with very little activity during the post-midnight hours. No significant scintillation activity is observed during the summer and winter months of the period of observation. The intensity (S4 index) of the scintillation activity is stronger around the equatorial ionization anomaly (EIA) region in the geographic latitude range of 15° to 25° N in the Indian region. These scintillations are often accompanied by the TEC depletions with durations ranging from 5 to 25 min and magnitudes from 5 to 15 TEC units which affect the positional accuracy of the GPS by 1 to 3 m. Further, during the intense scintillation events (S4>0.45≈10 dB), the GPS receiver is found to lose its lock for a short duration of 1 to 4 min, increasing the error bounds effecting the integrity of the SBAS operation. During the present period of study, a total of 395 loss of lock events are observed in the Indian EIA region; this number is likely to increase during the high sunspot activity (HSSA) period, creating more adverse conditions for the trans-ionospheric communications and the GPS-based navigation systems.


2008 ◽  
Vol 200 (2681) ◽  
pp. 10
Author(s):  
Anil Ananthaswamy
Keyword(s):  

2003 ◽  
Vol 21 (3) ◽  
pp. 745-750 ◽  
Author(s):  
K. Niranjan ◽  
P. S. Brahmanandam ◽  
P. Ramakrishna Rao ◽  
G. Uma ◽  
D. S. V. V. D. Prasad ◽  
...  

Abstract. A study carried out on the occurrence of post midnight spread-F events at a low-latitude station, Waltair (17.7° N, 83.3° E), India revealed that its occurrence is maximum in the summer solstice months of the low solar activity period and decreases with an increase in the sunspot activity. The F-region virtual height variations show that 80% of these spread-F cases are associated with an increase in the F-region altitude. It is suggested with the support of the night airglow 6300 A zenith intensity data obtained with co-located ground-based night airglow photometer and electron temperature data from the Indian SROSS C2 satellite that the seasonal variation of the occurrence and probable onset times of the post midnight spread-F depend on the characteristics of the highly variable semipermanent equatorial Midnight Temperature Maximum (MTM).Key words. Ionosphere (ionospheric irregularities; ionosphere atmosphere interactions) Atmospheric composition and structure (airglow and Aurora)


2018 ◽  
Vol 13 (S340) ◽  
pp. 209-210
Author(s):  
S. Ambily ◽  
V. G. Haritha ◽  
C. Sunil Kumar Morais ◽  
T. E. Girish

AbstractWe could find a new 5 year periodicity in the occurrences of peaks in sunspot activity and inferred deviations of annual Indian monsoon rainfall variations from the normal during the Maunder minimum (MM) period. This result is explained in terms of solar dynamo functioning in a different mode from normal during the MM where quadrupole field (first harmonic, 5-5.5 years) dominate over dipole field (fundamental, 11 years) causing extreme north south asymmetry in sunspot activity.


1992 ◽  
Vol 07 (06) ◽  
pp. 1309-1314
Author(s):  
RAUL HORVAT

One of the most attractive solutions to the solar-neutrino problem (including an anticorrelation of the solar-neutrino flux with sunspot activity) incorporates a Majorana neutrino having a flavor-changing transition moment as large as (0.1–1)×10−10 Bohr magnetons. This solution is compatible with all known laboratory, astrophysical and cosmological bounds. Here we show the consistency of the solution with the coherence condition for effective-mass eigenstates inside the sun.


Sign in / Sign up

Export Citation Format

Share Document