scholarly journals Analytical formula for pellet fuel source density in toroidal plasma configurations based on an areal deposition model

2020 ◽  
Vol 60 (6) ◽  
pp. 066027
Author(s):  
Jie Zhang ◽  
Paul Parks
Tellus B ◽  
2011 ◽  
Vol 63 (5) ◽  
Author(s):  
M. Antón ◽  
A. Serrano ◽  
M. L. Cancillo ◽  
J. A. García ◽  
S. Madronich
Keyword(s):  

1988 ◽  
Vol 53 (6) ◽  
pp. 1134-1140
Author(s):  
Martin Breza ◽  
Peter Pelikán

It is suggested that for some transition metal hexahalo complexes, the Eg-(a1g + eg) vibronic coupling model is better suited than the classical T2g-(a1g + eg) model. For the former, alternative model, the potential constants in the analytical formula are evaluated from the numerical map of the adiabatic potential surface by using the linear regression method. The numerical values for 29 hexahalo complexes of the 1st row transition metals are obtained by the CNDO/2 method. Some interesting trends of parameters of such Jahn-Teller-active systems are disclosed.


1976 ◽  
Vol 31 (6) ◽  
pp. 737-748 ◽  
Author(s):  
Karl-Heinz Tytko

Possible structures and the pertinent reaction pathways for the polymetalate ion present in a slightly soluble polymetalate having the analytical formula A2O · 2 MOs have been derived on the basis of theoretical considerations. Structure and kind of combination of the tetrameric units of one of the possibilities are in agreement with the results of X-ray structure analyses. First the previously proposed planar tetrametalate ion [M4O12(OH)4]4--is formed by stepwise aggregation according to an addition mechanism. This species undergoes a rearrangement of the coordination sphere of two of the M atoms and is then subject to a polycondensation resulting in a polytetrametalate chain, [M4O144-]n.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1226
Author(s):  
Saeed Najafi-Zangeneh ◽  
Naser Shams-Gharneh ◽  
Ali Arjomandi-Nezhad ◽  
Sarfaraz Hashemkhani Zolfani

Companies always seek ways to make their professional employees stay with them to reduce extra recruiting and training costs. Predicting whether a particular employee may leave or not will help the company to make preventive decisions. Unlike physical systems, human resource problems cannot be described by a scientific-analytical formula. Therefore, machine learning approaches are the best tools for this aim. This paper presents a three-stage (pre-processing, processing, post-processing) framework for attrition prediction. An IBM HR dataset is chosen as the case study. Since there are several features in the dataset, the “max-out” feature selection method is proposed for dimension reduction in the pre-processing stage. This method is implemented for the IBM HR dataset. The coefficient of each feature in the logistic regression model shows the importance of the feature in attrition prediction. The results show improvement in the F1-score performance measure due to the “max-out” feature selection method. Finally, the validity of parameters is checked by training the model for multiple bootstrap datasets. Then, the average and standard deviation of parameters are analyzed to check the confidence value of the model’s parameters and their stability. The small standard deviation of parameters indicates that the model is stable and is more likely to generalize well.


2021 ◽  
Vol 225 (2) ◽  
pp. 1020-1031
Author(s):  
Huachen Yang ◽  
Jianzhong Zhang ◽  
Kai Ren ◽  
Changbo Wang

SUMMARY A non-iterative first-arrival traveltime inversion method (NFTI) is proposed for building smooth velocity models using seismic diving waves observed on irregular surface. The new ray and traveltime equations of diving waves propagating in smooth media with undulant observation surface are deduced. According to the proposed ray and traveltime equations, an analytical formula for determining the location of the diving-wave turning points is then derived. Taking the influence of rough topography on first-arrival traveltimes into account, the new equations for calculating the velocities at turning points are established. Based on these equations, a method is proposed to construct subsurface velocity models from the observation surface downward to the bottom using the first-arrival traveltimes in common offset gathers. Tests on smooth velocity models with rugged topography verify the validity of the established equations, and the superiority of the proposed NFTI. The limitation of the proposed method is shown by an abruptly-varying velocity model example. Finally, the NFTI is applied to solve the static correction problem of the field seismic data acquired in a mountain area in the western China. The results confirm the effectivity of the proposed NFTI.


2019 ◽  
Vol 99 (1) ◽  
pp. 803-811 ◽  
Author(s):  
Boumediene Hamzi ◽  
Eyad H. Abed

AbstractThe paper studies an extension to nonlinear systems of a recently proposed approach to the definition of modal participation factors. A definition is given for local mode-in-state participation factors for smooth nonlinear autonomous systems. While the definition is general, the resulting measures depend on the assumed uncertainty law governing the system initial condition, as in the linear case. The work follows Hashlamoun et al. (IEEE Trans Autom Control 54(7):1439–1449 2009) in taking a mathematical expectation (or set-theoretic average) of a modal contribution measure over an uncertain set of system initial state. Poincaré linearization is used to replace the nonlinear system with a locally equivalent linear system. It is found that under a symmetry assumption on the distribution of the initial state, the tractable calculation and analytical formula for mode-in-state participation factors found for the linear case persists to the nonlinear setting. This paper is dedicated to the memory of Professor Ali H. Nayfeh.


2021 ◽  
Vol 92 (2) ◽  
pp. 023506
Author(s):  
A. Goriaev ◽  
T. Wauters ◽  
S. Möller ◽  
R. Brakel ◽  
S. Brezinsek ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1329
Author(s):  
Jung Seok Lee ◽  
Gwan Hui Lee ◽  
Wahab Mohyuddin ◽  
Hyun Chul Choi ◽  
Kang Wook Kim

Analysis and design of an ultra-wideband microstrip-to-slotline transition on a low permittivity substrate is presented. Cross-sectional structures along the proposed transition are analyzed using conformal mapping assuming quasi-TEM modes, attaining one analytical line impedance formula with varying design parameters. Although the slotline is a non-TEM transmission line, the transitional structures are configured to have quasi-TEM modes before forming into the slotline. The line impedance is optimally tapered using the Klopfenstein taper, and the electric field shapes are smoothly transformed from microstrip line to slotline. The analytical formula is accurate within 5% difference, and the final transition configuration can be designed without parameter tuning. The implemented microstrip-to-slotline transition possesses insertion loss of less than 1.5 dB per transition and return loss of more than 10 dB from 4.4 to over 40 GHz.


Sign in / Sign up

Export Citation Format

Share Document