analytical line
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 6)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 11 (23) ◽  
pp. 11237
Author(s):  
Anna N. Popova ◽  
Vladimir S. Sukhomlinov ◽  
Aleksandr S. Mustafaev

The article describes a nonlinear theory of how the presence of third elements affects the results of analyzing the elemental composition of substances by means of atomic emission spectroscopy. The theory is based on the assumption that there is an arbitrary relationship between the intensity of the analytical line of the analyte and the concentration of impurities and alloying elements. The theory has been tested on a simulation problem using commercially available equipment (the SPAS-05 spark spectrometer). By comparing the proposed algorithm with the traditional one, which assumes that there is a linear relationship between the intensity of the analytical line of the analyte and the intensities of the spectral lines (or concentrations) in the substance, it was revealed that there is a severalfold decrease in the deviations of nominal impurity concentrations from the measured ones. The results of this study allow for reducing the number of analytical procedures used in analyzing materials that have different compositions and the same matrix element. For instance, it becomes possible to determine the composition of iron-based alloys (low-alloy and carbon steels; high-speed steels; high-alloy, and heat-resistant steels) using one calibration curve within the framework of a universal analytical method.


2021 ◽  
Vol 62 (11) ◽  
pp. 1209-1213
Author(s):  
Yu.G. Lavrent’ev ◽  
L.V. Usova

Abstract —The basic software package of a JXA-8230 microanalyzer, like its predecessor JXA-8100, uses the long-established ZAF correction method (with some differences) for a quantitative analysis: Calculation of mass absorption coefficients is based on Chantler’s theoretical data. The core of this method is quantum-mechanical calculation of the cross section of the interaction between an X-ray photon and atomic electrons. This innovation has had a positive influence on the trueness of X-ray microanalysis. Control tests on specimens where the absorption effect is dominant have demonstrated that the results of this analysis are slightly lower (by less than 2%) independently of the matrix absorption interval in which the analytical line is located. As a consequence, the selection of comparison specimens becomes easier: It is sufficient that the specimen under study and the comparison specimen belong to the same isomorphic series and that the intensity of the analytical line of the comparison specimen allows for the measurement with the required accuracy.


2021 ◽  
Vol 8 (1) ◽  
pp. 13
Author(s):  
Saisantosh Vamshi Harsha Madiraju ◽  
Ashok Kumar

Particulate matter (PM) is released in varying quantities from mobile sources depending on the type of fossil fuel used in combustion. According to the USEPA, PM exposure could cause a variety of problems such as premature deaths, nonfatal heart attacks, irregular heartbeat, asthma, reduced lung function, and respiratory issues. Therefore, it is necessary to predict the downwind concentrations near highways from mobile sources to protect the public from adverse health effects. The current study concentrates on developing an analytical line source dispersion model to account for different particle size ranges for particulate matter released from mobile sources. Available line source models do not explicitly consider different ranges of particle sizes present in the exhaust. The present study discusses the development of a dispersion model to predict downwind concentrations of PM by incorporating a range of particle sizes for an infinite and a finite-length mobile source. The dry deposition of particles is also considered during development. The emission rate, wind speed, wind direction, atmospheric turbulence, and dry deposition velocity of the particles are the model inputs. The sensitivity of the model is determined by simultaneously varying the independent input variables using Monte Carlo simulation by Crystal Ball software. The sensitivity analysis results generated using Crystal Ball are preliminary in nature and should be re-examined.


Author(s):  
Rosabel Roig-Vila ◽  
Gladys Merma-Molina ◽  
Diego Gavilán-Martín

The authors analyze the figure of the Franciscan Francesc Eiximenis, and especially his Regiment de la cosa pública, from a reflection on medieval pedagogy and politics. Likewise, they establish meeting points between the thought, the words and the pedagogy of Eiximenis and those of other authors. So, the chapter draws a chronological-analytical line between him and other relevant figures of the 13th through the 16th centuries, such as Saint Thomas Aquinas, Beatus Ramon Llull, Niccolò Machiavelli, (Saint) Thomas More, Saint Vincent Ferrer, and Joan Lluis Vives.


Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1329
Author(s):  
Jung Seok Lee ◽  
Gwan Hui Lee ◽  
Wahab Mohyuddin ◽  
Hyun Chul Choi ◽  
Kang Wook Kim

Analysis and design of an ultra-wideband microstrip-to-slotline transition on a low permittivity substrate is presented. Cross-sectional structures along the proposed transition are analyzed using conformal mapping assuming quasi-TEM modes, attaining one analytical line impedance formula with varying design parameters. Although the slotline is a non-TEM transmission line, the transitional structures are configured to have quasi-TEM modes before forming into the slotline. The line impedance is optimally tapered using the Klopfenstein taper, and the electric field shapes are smoothly transformed from microstrip line to slotline. The analytical formula is accurate within 5% difference, and the final transition configuration can be designed without parameter tuning. The implemented microstrip-to-slotline transition possesses insertion loss of less than 1.5 dB per transition and return loss of more than 10 dB from 4.4 to over 40 GHz.


2019 ◽  
Vol 85 (1II)) ◽  
pp. 15-32
Author(s):  
A. A. Pupyshev

The main sources of spectral interferences in atomic emission spectral analysis (AESA) are considered, including both wide-range (bremsstrahlung and recombination continuum, radiation of hot condensed particles and electrode ends, scattered light in the spectrometer, overlapping of the analytical line by the wings of the neighbor strong spectral lines of interfering elements, imposition of the components of molecular bands with the very close lines) and narrow-band (partial or complete overlapping of the analytical line with atomic or ionic lines of the sample elements, electrodes and discharge atmosphere; superposition of spectra from higher orders of reflection in conventional diffraction spectrometers and from neighboring orders in two-dimensional echelle spectrometers). The features of their manifestation in various sources of spectrum excitation (flames, DC arc, spark discharges, arc plasma discharges, inductively coupled plasma, microwave plasma, low-pressure electric discharges, laser spark) are considered. The possibilities of reducing the level of spectral interferences or elimination of the spectral noise at the stage of design and manufacturing of AESA devices, as well as upon selecting and adjusting of operation conditions of the analysis are shown. Much attention is paid to the most easily implemented in practice off-peak correction of wide-range spectral interferences. The modern methods of background correction under the spectral peak (under-peak) using a software for atomic emission spectrometers and providing creation of various mathematical models of the background signal in the vicinity of the analytical line at the stage of developing a specific AESA technique are considered. The issues of the choice of spectral lines for analytical measurements, tables and atlases of spectral lines, electronic databases used for this purpose are considered in detail. Specific features of application of the method of inter-element correction with direct spectral overlapping of the lines are given. The operating sequence for taking into account spectral interferences when developing the analysis techniques is proposed.


2018 ◽  
Vol 860 (2) ◽  
pp. 143 ◽  
Author(s):  
Cody Carr ◽  
Claudia Scarlata ◽  
Nino Panagia ◽  
Alaina Henry

2018 ◽  
Vol 19 (4) ◽  
pp. 1107-1122 ◽  
Author(s):  
Emilie P. Dassié ◽  
Dominique Genty ◽  
Aurélie Noret ◽  
Xavier Mangenot ◽  
Marc Massault ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document