SOLPS-ITER simulations of a CPS-based liquid metal divertor for the EU DEMO: Li vs. Sn

2022 ◽  
Author(s):  
Giuseppe Francesco Nallo ◽  
Giuseppe Mazzitelli ◽  
Matteo Moscheni ◽  
Fabio Subba ◽  
Roberto Zanino

Abstract In this work, we study the effect of installing a liquid metal divertor (LMD) using a capillary-porous structure in the EU DEMO tokamak within the same envelope of the baseline solid divertor. We used the SOLPS-ITER code to model the Scrape-Off Layer (SOL) plasma and neutrals, coupled to a target thermal model to enable the self-consistent calculation of the LM target erosion rate, and adopting a fluid neutral model for the sake of simplicity. First calculations considering only D and Li (or Sn) showed a significant reduction of the steady state target heat load with respect to simulations considering only D, thanks to vapor shielding. Nevertheless, the computed peak target heat flux (~31 MW/m2 and ~44 MW/m2 for Li and Sn, respectively) was still larger than/borderline to the power handling limit of the LMD concepts considered. Moreover, the impurity concentration in the pedestal - a proxy for the core plasma dilution/contamination - was computed to be above/close to tolerability limits suggested by previous COREDIV calculations. These results indicate that the operational window of an LMD for the EU DEMO, without any additional impurity seeding, might be too narrow, if it exists, and that Sn looks more promising than Li. A second set of calculations was then performed simulating Ar seeding in the SOL, to further reduce the target heat load, and consequently the metal erosion rate. It was found that the mitigation of the plasma heat load due to Ar radiation in the SOL effectively replaces the radiation associated to vapor shielding in front of the target, thus allowing to operate the LMD in a regime of low target erosion. The resulting operational window was found to be significantly wider, both in terms of tolerable peak target heat flux and of acceptable core plasma contamination.

2021 ◽  
Vol 91 (4) ◽  
pp. 567
Author(s):  
В.Г. Скоков ◽  
В.Ю. Сергеев ◽  
Е.А. Ануфриев ◽  
Б.В. Кутеев

For the DEMO-FNS tokamak being developed in Russia, the choice of the divertor concept with evaporating liquid lithium is discussed, which meets the requirements for removing the heat load from the peripheral plasma and provides an acceptable level of change in the ionic composition of the core plasma. The paper presents the results of numerical modeling and optimization of divertor parameters with several chambers partitioned by slotted nozzles. The parameters of lithium fluxes flowing into the peripheral layer are estimated for the temperature range of the divertor chambers from 500 to 1000 K under gas-kinetic and molecular flow regimes of lithium vapor from the divertor. The fulfilled analysis of processes that reduce the outflow of lithium from the chambers and its penetration into the core plasma volume inside the separatrix showed that sectioning effectively reduces the Li fluxes to acceptable levels of ~ 1020 atoms per second.


2021 ◽  
Vol 27 ◽  
pp. 100978
Author(s):  
M. Moscheni ◽  
M. Carr ◽  
S. Dulla ◽  
F. Maviglia ◽  
A. Meakins ◽  
...  

2013 ◽  
Vol 55 (12) ◽  
pp. 124036 ◽  
Author(s):  
T Pütterich ◽  
R Dux ◽  
R Neu ◽  
M Bernert ◽  
M N A Beurskens ◽  
...  
Keyword(s):  
The Core ◽  

2014 ◽  
Vol 54 (4) ◽  
pp. 043010 ◽  
Author(s):  
J. Miyazawa ◽  
Y. Suzuki ◽  
S. Satake ◽  
R. Seki ◽  
Y. Masaoka ◽  
...  

2021 ◽  
Author(s):  
Xueyun Wang ◽  
Xueqiao Xu ◽  
Philip B Snyder ◽  
Zeyu Li

Abstract The BOUT++ six-field turbulence code is used to simulate the ITER 11.5MA hybrid scenario and a brief comparison is made among ITER baseline, hybrid and steady-state operation (SSO) scenarios. Peeling-ballooning instabilities with different toroidal mode numbers dominate in different scenarios and consequently yield different types of ELMs. The energy loss fractions (ΔWped/Wped) caused by unmitigated ELMs in the baseline and hybrid scenarios are large (~2%) while the one in the SSO scenario is dramatically smaller (~1%), which are consistent with the features of type-I ELMs and grassy ELMs respectively. The intra ELM divertor heat flux width in the three scenarios given by the simulations is larger than the estimations for inter ELM phase based on Goldston’s heuristic drift model. The toroidal gap edge melting limit of tungsten monoblocks of divertor targets imposes constraints on ELM energy loss, giving that the ELM energy loss fraction should be smaller than 0.4%, 1.0%, and 1.2% for ITER baseline, hybrid and SSO scenarios, correspondingly. The simulation shows that only the SSO scenario with grassy ELMs may satisfy the constraint.


Author(s):  
Michael Kivisalu ◽  
Amitabh Narain ◽  
Patcharapol Gorgitrattanagul ◽  
Ranjeeth Naik

For shear driven mm-scale flows, the traditional boiler and condenser operations pose serious problems of degraded performance (low heat-flux values, high pressure drops, and device-and-system level instabilities). The innovative devices are introduced for functionality and high heat load capabilities needed for shear dominated electronic cooling situations that arise in milli-meter scale operations, certain gravity-insensitive avionics-cooling and zero-gravity applications.


2018 ◽  
Vol 8 (1) ◽  
pp. 307-313 ◽  
Author(s):  
Michał Stanclik

Abstract This paper presents a new brush seal construction idea. It was shown that it is possible to use bimetallic elements for the construction of the brush seal, which have a thermoregulatory function by relieving a contact area between bristles and a shaft surface reducing frictional heat flux. This should improve the durability of the seal by diminishing the heat load and significantly decreases the temperature of the seal during the startup/ shutdown. This article shows a simplified construction of the concept brush seal as well as numerical and experimental results.


2013 ◽  
Vol 9 (2) ◽  
pp. 177-188 ◽  
Author(s):  
Cesare Pinelli

The enduring joint decision trap in the absence of European government – Postnational constitutionalism – The dismissal of politics – Accountability of government before parliament at the core of representative democracy – Internalising the benefits and of externalising the disadvantages of staying together in the Union possible as long as political accountability is not ensured in the EU system – Breathing political life into the EU through constitutional practice without formal Treaty amendment – A time-frame for approval of treaty amendments – EP and the election of Commission president


2013 ◽  
Vol 723 ◽  
pp. 91-125 ◽  
Author(s):  
W. M. J. Lazeroms ◽  
G. Brethouwer ◽  
S. Wallin ◽  
A. V. Johansson

AbstractThis work describes the derivation of an algebraic model for the Reynolds stresses and turbulent heat flux in stably stratified turbulent flows, which are mutually coupled for this type of flow. For general two-dimensional mean flows, we present a correct way of expressing the Reynolds-stress anisotropy and the (normalized) turbulent heat flux as tensorial combinations of the mean strain rate, the mean rotation rate, the mean temperature gradient and gravity. A system of linear equations is derived for the coefficients in these expansions, which can easily be solved with computer algebra software for a specific choice of the model constants. The general model is simplified in the case of parallel mean shear flows where the temperature gradient is aligned with gravity. For this case, fully explicit and coupled expressions for the Reynolds-stress tensor and heat-flux vector are given. A self-consistent derivation of this model would, however, require finding a root of a polynomial equation of sixth-order, for which no simple analytical expression exists. Therefore, the nonlinear part of the algebraic equations is modelled through an approximation that is close to the consistent formulation. By using the framework of a$K\text{{\ndash}} \omega $model (where$K$is turbulent kinetic energy and$\omega $an inverse time scale) and, where needed, near-wall corrections, the model is applied to homogeneous shear flow and turbulent channel flow, both with stable stratification. For the case of homogeneous shear flow, the model predicts a critical Richardson number of 0.25 above which the turbulent kinetic energy decays to zero. The channel-flow results agree well with DNS data. Furthermore, the model is shown to be robust and approximately self-consistent. It also fulfils the requirements of realizability.


Sign in / Sign up

Export Citation Format

Share Document