core plasma
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 25)

H-INDEX

20
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Giuseppe Francesco Nallo ◽  
Giuseppe Mazzitelli ◽  
Matteo Moscheni ◽  
Fabio Subba ◽  
Roberto Zanino

Abstract In this work, we study the effect of installing a liquid metal divertor (LMD) using a capillary-porous structure in the EU DEMO tokamak within the same envelope of the baseline solid divertor. We used the SOLPS-ITER code to model the Scrape-Off Layer (SOL) plasma and neutrals, coupled to a target thermal model to enable the self-consistent calculation of the LM target erosion rate, and adopting a fluid neutral model for the sake of simplicity. First calculations considering only D and Li (or Sn) showed a significant reduction of the steady state target heat load with respect to simulations considering only D, thanks to vapor shielding. Nevertheless, the computed peak target heat flux (~31 MW/m2 and ~44 MW/m2 for Li and Sn, respectively) was still larger than/borderline to the power handling limit of the LMD concepts considered. Moreover, the impurity concentration in the pedestal - a proxy for the core plasma dilution/contamination - was computed to be above/close to tolerability limits suggested by previous COREDIV calculations. These results indicate that the operational window of an LMD for the EU DEMO, without any additional impurity seeding, might be too narrow, if it exists, and that Sn looks more promising than Li. A second set of calculations was then performed simulating Ar seeding in the SOL, to further reduce the target heat load, and consequently the metal erosion rate. It was found that the mitigation of the plasma heat load due to Ar radiation in the SOL effectively replaces the radiation associated to vapor shielding in front of the target, thus allowing to operate the LMD in a regime of low target erosion. The resulting operational window was found to be significantly wider, both in terms of tolerable peak target heat flux and of acceptable core plasma contamination.


2021 ◽  
Author(s):  
Liang Wang ◽  
H Q Wang ◽  
David Eldon ◽  
Q P Yuan ◽  
Siye Ding ◽  
...  

Abstract The compatibility of efficient divertor detachment with high-performance core plasma is vital to the development of magnetically controlled fusion energy. The joint research on the EAST and DIII-D tokamaks demonstrates successful integration of divertor detachment with excellent core plasma confinement quality, a milestone towards solving the critical Plasma-wall-interaction (PWI) issue and core-edge integration for ITER and future reactors. In EAST, actively controlled partial detachment with Tet,div ~ 5 eV around the strike point and H98 > 1 in different H-mode scenarios including the high βP H-mode scenario have been achieved with ITER-like tungsten divertor, by optimizing the detachment access condition and performing detailed experiments for core-edge integration. For active long pulse detachment feedback control, a 30s H-mode operation with detachment-control duration being 25s has been successfully achieved in EAST. DIII-D has achieved actively controlled fully detached divertor with low plasma electron temperature (Tet,div ≤ 5 eV across the entire divertor target) and low particle flux (degree of detachment, DoD >3), simultaneously with very high core performance (βN ~3, βP >2 and H98~1.5) in the high βP scenario being developed for ITER and future reactors. The high-βP high confinement scenario is characterized by an internal transport barrier (ITB) at large radius and a weak edge transport barrier (ETB, or pedestal), which are synergistically self-organized. Both the high-βP scenario and impurity seeding facilitate divertor detachment. The detachment access leads to the reduction of ETB, which facilitates the development of an even stronger ITB at large radius in the high βP scenario. Thus, this strong large radius ITB enables the core confinement improvement during detachment. These significant joint DIII-D and EAST advances on the compatibility of high confinement core and detached divertor show a great potential for achieving a high-performance core plasma suitable for long pulse operation of fusion reactors with controllable steady-state PWIs.


2021 ◽  
Author(s):  
Alina Eksaeva ◽  
Andreas Kirschner ◽  
Juri Romazanov ◽  
Sebastijan Brezinsek ◽  
Christian Linsmeier ◽  
...  

Abstract Erosion and deposition is modelled with ERO2.0 for a hypothetical full-tungsten ITER for an ELM-free H-Mode baseline deuterium discharge. A parameter study considering seeding impurities (Ne, Ar, Kr, Xe) at constant percentages (0.05% to 1.0%) of the deuterium ion flux is done while neglecting their radiation cooling and core plasma compatibility. With pure deuterium plasma, tungsten main wall erosion is only due to charge exchange deuterium atoms and self-sputtering and there is only minor tungsten divertor sputtering. With a beryllium main wall, beryllium erosion is due to deuterium ions, charge exchange deuterium neutrals and self-sputtering. For this case, tungsten in the divertor is eroded by beryllium ions and self-sputtering. The simulations for full-tungsten device including seeded impurities leads to significant tungsten erosion in the divertor. In general, tungsten erosion, self-sputtering and deposition increase by factors larger than 50 at the main wall and 5000 in the divertor compared to pure deuterium plasma


2021 ◽  
Author(s):  
Masahiro Kobayashi ◽  
Ryosuke Seki ◽  
Yuki Hayashi ◽  
Tetsutarou Oishi ◽  
Kanji Tanaka ◽  
...  

Abstract In order to explore compatibility of good core plasma performance with divertor heat load mitigation, interaction between cold edge plasma and core plasma transport including edge transport barrier (ETB) has been analysed in the divertor detachment discharges of deuterium plasmas in LHD with RMP (resonant magnetic perturbation) field application. The RMP application introduces widened edge stochastic layer and sharp boundary in the magnetic field structure between the confinement region and the edge stochastic layer. The widened edge stochastic layer enhances impurity radiation and provides stable detachment operation as compared with the case without RMP. It is found that ETB is formed at the confinement boundary at the onset of detachment transition. However, as the detachment deepens resistive pressure gradient driven MHD mode is excited, which degrade the ETB. At the same time, however, the core transport decreases to keep global plasma stored energy (Wp) unchanged, showing clearly core-edge coupling. After gradual increase of density fluctuation during the MHD activity, spontaneous increase of Wp and recovery of ETB are observed while the detachment is maintained. Then the coherent MHD mode ceases and ELM like bursts appear. In the improved mode, the impurity decontamination occurs, and the divertor heat load increase slightly. Key controlling physics in the interplay between core and cold edge plasma is discussed. Comparison between deuterium and hydrogen plasmas show that the hydrogen plasmas exhibit similar features as the deuterium ones in terms of density and magnetic fluctuations, impurity decontamination toward higher confinement etc. But most of the features are modest in the hydrogen plasmas and thus no clear confinement mode transition with clear ETB formation is defined. Better global confinement is obtained in the deuterium plasmas than the hydrogen ones at higher radiation level.


2021 ◽  
Vol 13 (23) ◽  
pp. 4758
Author(s):  
Mengjie Wu ◽  
Peng Guo ◽  
Wei Zhou ◽  
Junchen Xue ◽  
Xingyuan Han ◽  
...  

The mapping function is crucial for the conversion of slant total electron content (TEC) to vertical TEC for low Earth orbit (LEO) satellite-based observations. Instead of collapsing the ionosphere into one single shell in commonly used mapping models, we defined a new mapping function assuming the vertical ionospheric distribution as an exponential profiler with one simple parameter: the plasmaspheric scale height in the zenith direction of LEO satellites. The scale height obtained by an empirical model introduces spatial and temporal variances into the mapping function. The performance of the new method is compared with the mapping function F&K by simulating experiments based on the global core plasma model (GCPM), and it is discussed along with the latitude, seasons, local time, as well as solar activity conditions and varying LEO orbit altitudes. The assessment indicates that the new mapping function has a comparable or better performance than the F&K mapping model, especially on the TEC conversion of low elevation angles.


2021 ◽  
Author(s):  
Xingquan Wu ◽  
Guo Sheng Xu ◽  
Ning Yan ◽  
Ran Chen ◽  
Liang Wang ◽  
...  

Abstract Towards the physical understanding on the formation of flattened upstream scrape-off-layer (SOL) density profiles, namely ‘density shoulders’, a self-consistent one-dimensional radial transport model has been developed to estimate the upstream profiles covering both core plasma and SOL region at tokamak midplane. For the SOL region, the effective density and temperature profiles for the ionization process are obtained by weighted averaging of the upstream and downstream profiles, which can distinguish the open target operation (OTO) from the closed target operation (CTO) by a weighting factor. Compared with the enhanced turbulent convective transport, it is complementary for the model to study the competition between the effective source Seff and the parallel particle loss LSOL . It indicates that: (1) an appropriate Seff intensity controlled by the neutral pressure due to divertor or wall recycling and (2) an appropriate Seff peak position in a far SOL region adjusted by the plasma current as well as the weighting factor could offset the damping effect of LSOL on density profile. Then Seff over LSOL in a far SOL region could be the sole process involved in bringing about SOL density shoulders.


Author(s):  
Yasuhiro Suzuki ◽  
Shimpei Futatani ◽  
Joachim Geiger

Abstract Three-dimensional nonlinear MHD simulations study the core collapse events observed in a stellarator experiment, Wendelstein 7-X. In the low magnetic shear configuration like the Wendelstein 7-X, the rotational transform profile is very sensitive to the toroidal current density. The 3D equilibrium with localized toroidal current density is studied. If the toroidal current density follows locally in the middle of the minor radius, the rotational transform is also changed locally. Sometimes, the magnetic topology changes due to appearing the magnetic island. A full three-dimensional nonlinear MHD code studies the nonlinear behaviors of the MHD instability. It was found that the following sequence. At first, the high-n ballooning-type mode structure appears in the plasma core, and then the mode linearly grows. The high-n ballooning modes nonlinearly couple and saturate. The mode structure changes to the low-n mode. The magnetic field structure becomes strongly stochastic into the plasma core due to the nonlinear coupling in that phase. Finally, the plasma pressure diffuses along the stochastic field lines, and then the core plasma pressure drops. This is a crucial result to interpret the core collapse event by strong nonlinear coupling.


2021 ◽  
Vol 507 (3) ◽  
pp. 3936-3951
Author(s):  
Kristopher Cooper ◽  
Iain G Hannah ◽  
Brian W Grefenstette ◽  
Lindsay Glesener ◽  
Säm Krucker ◽  
...  

ABSTRACT We investigate the spatial, temporal, and spectral properties of 10 microflares from AR12721 on 2018 September 9 and 10 observed in X-rays using the Nuclear Spectroscopic Telescope ARray and the Solar Dynamic Observatory’s Atmospheric Imaging Assembly and Helioseismic and Magnetic Imager. We find GOES sub-A class equivalent microflare energies of 1026–1028 erg reaching temperatures up to 10 MK with consistent quiescent or hot active region (AR) core plasma temperatures of 3–4 MK. One microflare (SOL2018-09-09T10:33), with an equivalent GOES class of A0.1, has non-thermal hard X-ray emission during its impulsive phase (of non-thermal power ∼7 × 1024 erg s−1) making it one of the faintest X-ray microflares to have direct evidence for accelerated electrons. In 4 of the 10 microflares, we find that the X-ray time profile matches fainter and more transient sources in the extreme-ultraviolet, highlighting the need for observations sensitive to only the hottest material that reaches temperatures higher than those of the AR core (>5 MK). Evidence for corresponding photospheric magnetic flux cancellation/emergence present at the footpoints of eight microflares is also observed.


2021 ◽  
Vol 16 (0) ◽  
pp. 1405085-1405085
Author(s):  
Takuya GOTO ◽  
Katsuji ICHIGUCHI ◽  
Hitoshi TAMURA ◽  
Junichi MIYAZAWA ◽  
Shinsuke SATAKE ◽  
...  

2021 ◽  
Vol 92 (5) ◽  
pp. 053521
Author(s):  
Grant Rutherford ◽  
Syun’ichi Shiraiwa ◽  
David R. Smith ◽  
Nicola Bertelli

Sign in / Sign up

Export Citation Format

Share Document