Analysis of time-lapse seismic and production data for reservoir model classification and assessment

2018 ◽  
Vol 15 (4) ◽  
pp. 1561-1587 ◽  
Author(s):  
Rafael Souza ◽  
David Lumley ◽  
Jeffrey Shragge ◽  
Alessandra Davolio ◽  
Denis José Schiozer
2018 ◽  
Vol 2018 (1) ◽  
pp. 1-7
Author(s):  
Rafael Souza ◽  
David Lumley ◽  
Jeffrey Shragge ◽  
Alessandra Davolio ◽  
Denis Schiozer

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1052
Author(s):  
Baozhong Wang ◽  
Jyotsna Sharma ◽  
Jianhua Chen ◽  
Patricia Persaud

Estimation of fluid saturation is an important step in dynamic reservoir characterization. Machine learning techniques have been increasingly used in recent years for reservoir saturation prediction workflows. However, most of these studies require input parameters derived from cores, petrophysical logs, or seismic data, which may not always be readily available. Additionally, very few studies incorporate the production data, which is an important reflection of the dynamic reservoir properties and also typically the most frequently and reliably measured quantity throughout the life of a field. In this research, the random forest ensemble machine learning algorithm is implemented that uses the field-wide production and injection data (both measured at the surface) as the only input parameters to predict the time-lapse oil saturation profiles at well locations. The algorithm is optimized using feature selection based on feature importance score and Pearson correlation coefficient, in combination with geophysical domain-knowledge. The workflow is demonstrated using the actual field data from a structurally complex, heterogeneous, and heavily faulted offshore reservoir. The random forest model captures the trends from three and a half years of historical field production, injection, and simulated saturation data to predict future time-lapse oil saturation profiles at four deviated well locations with over 90% R-square, less than 6% Root Mean Square Error, and less than 7% Mean Absolute Percentage Error, in each case.


2012 ◽  
Vol 15 (05) ◽  
pp. 571-583 ◽  
Author(s):  
C.S.. S. Kabir ◽  
M.. Elgmati ◽  
Z.. Reza

Summary Estimating the average drainage-area pressure (pav) of individual wells is a cornerstone to any reservoir-management practice. Yet conventional methods do not always offer reliable solutions to this vexing problem. This study shows that transient flow-after-flow (FAF) testing offers an excellent opportunity to establish pav in a time-lapse mode, when conducted following operational shutdowns. Instrumented wells are natural candidates for FAF testing. Real-time surveillance offers the opportunity to perform rate-transient analysis that results in drainage volume and, consequently, pav. However, gathering quality rate data commensurate with pressure over a long producing period is fraught with uncertainty, which raises questions about the validity of the pav so obtained. In addition, continuous changes in drainage-boundary conditions pose modeling challenges with a given reservoir model. Therefore, the independent estimation of pav cannot be overemphasized. This paper presents a theroretical framework for transient FAF testing and also shows a pragmatic approach to handling pressure/rate data incoherence.


2001 ◽  
Vol 41 (1) ◽  
pp. 679
Author(s):  
S. Reymond ◽  
E. Matthews ◽  
B. Sissons

This case study illustrates how 3D generalised inversion of seismic facies for reservoir parameters can be successfully applied to image and laterally predict reservoir parameters in laterally discontinuous turbiditic depositional environment where hydrocarbon pools are located in complex combined stratigraphic-structural traps. Such conditions mean that structural mapping is inadequate to define traps and to estimate reserves in place. Conventional seismic amplitude analysis has been used to aid definition but was not sufficient to guarantee presence of economic hydrocarbons in potential reservoir pools. The Ngatoro Field in Taranaki, New Zealand has been producing for nine years. Currently the field is producing 1,000 bopd from seven wells and at three surface locations down from a peak of over 1,500 bopd. The field production stations have been analysed using new techniques in 3D seismic imaging to locate bypassed oils and identify undrained pools. To define the objectives of the study, three questions were asked:Can we image reservoir pools in a complex stratigraphic and structural environment where conventional grid-based interpretation is not applicable due to lack of lateral continuity in reservoir properties?Can we distinguish fluids within each reservoir pools?Can we extrapolate reservoir parameters observed at drilled locations to the entire field using 3D seismic data to build a 3D reservoir model?Using new 3D seismic attributes such as bright spot indicators, attenuation and edge enhancing volumes coupled with 6 AVO (Amplitude Versus Offset) volumes integrated into a single class cube of reservoir properties, made the mapping of reservoir pools possible over the entire data set. In addition, four fluid types, as observed in more than 20 reservoir pools were validated by final inverted results to allow lateral prediction of fluid contents in un-drilled reservoir targets. Well production data and 3D seismic inverted volume were later integrated to build a 3D reservoir model to support updated volumetrics reserves computation and to define additional targets for exploration drilling, additional well planning and to define a water injection plan for pools already in production.


SPE Journal ◽  
2006 ◽  
Vol 11 (04) ◽  
pp. 464-479 ◽  
Author(s):  
B. Todd Hoffman ◽  
Jef K. Caers ◽  
Xian-Huan Wen ◽  
Sebastien B. Strebelle

Summary This paper presents an innovative methodology to integrate prior geologic information, well-log data, seismic data, and production data into a consistent 3D reservoir model. Furthermore, the method is applied to a real channel reservoir from the African coast. The methodology relies on the probability-perturbation method (PPM). Perturbing probabilities rather than actual petrophysical properties guarantees that the conceptual geologic model is maintained and that any history-matching-related artifacts are avoided. Creating reservoir models that match all types of data are likely to have more prediction power than methods in which some data are not honored. The first part of the paper reviews the details of the PPM, and the next part of this paper describes the additional work that is required to history-match real reservoirs using this method. Then, a geological description of the reservoir case study is provided, and the procedure to build 3D reservoir models that are only conditioned to the static data is covered. Because of the character of the field, the channels are modeled with a multiple-point geostatistical method. The channel locations are perturbed in a manner such that the oil, water, and gas rates from the reservoir more accurately match the rates observed in the field. Two different geologic scenarios are used, and multiple history-matched models are generated for each scenario. The reservoir has been producing for approximately 5 years, but the models are matched only to the first 3 years of production. Afterward, to check predictive power, the matched models are run for the last 1½ years, and the results compare favorably with the field data. Introduction Reservoir models are constructed to better understand reservoir behavior and to better predict reservoir response. Economic decisions are often based on the predictions from reservoir models; therefore, such predictions need to be as accurate as possible. To achieve this goal, the reservoir model should honor all sources of data, including well-log, seismic, geologic information, and dynamic (production rate and pressure) data. Incorporating dynamic data into the reservoir model is generally known as history matching. History matching is difficult because it poses a nonlinear inverse problem in the sense that the relationship between the reservoir model parameters and the dynamic data is highly nonlinear and multiple solutions are avail- able. Therefore, history matching is often done with a trial-and-error method. In real-world applications of history matching, reservoir engineers manually modify an initial model provided by geoscientists until the production data are matched. The initial model is built based on geological and seismic data. While attempts are usually made to honor these other data as much as possible, often the history-matched models are unrealistic from a geological (and geophysical) point of view. For example, permeability is often altered to increase or decrease flow in areas where a mismatch is observed; however, the permeability alterations usually come in the form of box-shaped or pipe-shaped geometries centered around wells or between wells and tend to be devoid of any geologica. considerations. The primary focus lies in obtaining a history match.


2000 ◽  
Author(s):  
Xuri Huang ◽  
Robert Will ◽  
Mashiur Khan ◽  
Larry Stanley

SPE Journal ◽  
2006 ◽  
Vol 11 (04) ◽  
pp. 418-430 ◽  
Author(s):  
Karl D. Stephen ◽  
Juan Soldo ◽  
Colin Macbeth ◽  
Mike A. Christie

Summary Time-lapse (or 4D) seismic is increasingly being used as a qualitative description of reservoir behavior for management and decision-making purposes. When combined quantitatively with geological and flow modeling as part of history matching, improved predictions of reservoir production can be obtained. Here, we apply a method of multiple-model history matching based on simultaneous comparison of spatial data offered by seismic as well as individual well-production data. Using a petroelastic transform and suitable rescaling, forward-modeled simulations are converted into predictions of seismic impedance attributes and compared to observed data by calculation of a misfit. A similar approach is applied to dynamic well data. This approach improves on gradient-based methods by avoiding entrapment in local minima. We demonstrate the method by applying it to the UKCS Schiehallion reservoir, updating the operator's model. We consider a number of parameters to be uncertain. The reservoir's net to gross is initially updated to better match the observed baseline acoustic impedance derived from the RMS amplitudes of the migrated stack. We then history match simultaneously for permeability, fault transmissibility multipliers, and the petroelastic transform parameters. Our results show a good match to the observed seismic and well data with significant improvement to the base case. Introduction Reservoir management requires tools such as simulation models to predict asset behavior. History matching is often employed to alter these models so that they compare favorably to observed well rates and pressures. This well information is obtained at discrete locations and thus lacks the areal coverage necessary to accurately constrain dynamic reservoir parameters such as permeability and the location and effect of faults. Time-lapse seismic captures the effect of pressure and saturation on seismic impedance attributes, giving 2D maps or 3D volumes of the missing information. The process of seismic history matching attempts to overlap the benefits of both types of information to improve estimates of the reservoir model parameters. We first present an automated multiple-model history-matching method that includes time-lapse seismic along with production data, based on an integrated workflow (Fig. 1). It improves on the classical approach, wherein the engineer manually adjusts parameters in the simulation model. Our method also improves on gradient-based methods, such as Steepest Descent, Gauss-Newton, and Levenberg-Marquardt algorithms (e.g., Lépine et al. 1999;Dong and Oliver 2003; Gosselin et al. 2003; Mezghani et al. 2004), which are good at finding local likelihood maxima but can fail to find the global maximum. Our method is also faster than stochastic methods such as genetic algorithms and simulated annealing, which often require more simulations and may have slower convergence rates. Finally, multiple models are generated, enabling posterior uncertainty analysis in a Bayesian framework (as in Stephen and MacBeth 2006a).


Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. O45-O58 ◽  
Author(s):  
Alireza Shahin ◽  
Robert Tatham ◽  
Paul Stoffa ◽  
Kyle Spikes

Separation of fluid pore pressure and saturation using inverted time-lapse seismic attributes is a mandatory task for field development. Multiple pairs of inversion-derived attributes can be used in a crossplot domain. We performed a sensitivity analysis to determine an optimal crossplot, and the validity of the separation is tested with a comprehensive petroelastic reservoir model. We simulated a poorly consolidated shaly sandstone reservoir based on a prograding near-shore depositional environment. A model of effective porosity is first simulated by Gaussian geostatistics. Well-known theoretical and experimental petrophysical correlations were then efficiently combined to consistently simulate reservoir properties. Next, the reservoir model was subjected to numerical simulation of multiphase fluid flow to predict the spatial distributions of fluid saturation and pressure. A geologically consistent rock physics model was then used to simulate the inverted seismic attributes. Finally, we conducted a sensitivity analysis of seismic attributes and their crossplots as a tool to discriminate the effect of pressure and saturation. The sensitivity analysis demonstrates that crossplotting of acoustic impedance versus shear impedance should be the most stable way to separate saturation and pressure changes compared to other crossplots (e.g., velocity ratio versus acoustic impedance). We also demonstrated that the saturation and pressure patterns were detected in most of the time-lapse scenarios; however, the saturation pattern is more likely detectable because the percentage in pressure change is often lower than that of the saturation change. Imperfections in saturation and pressure patterns exist in various forms, and they can be explained by the interaction of saturation and pressure, the diffusive nature of pressure, and rapid change in pressure due to production operations.


Sign in / Sign up

Export Citation Format

Share Document