scholarly journals Air temperature measurement challenges in precision metrology

2018 ◽  
Vol 1065 ◽  
pp. 122027 ◽  
Author(s):  
M de Podesta ◽  
R Underwood ◽  
L Bevilacqua ◽  
S Bell
Author(s):  
Y. Sommerer ◽  
V. Drouin ◽  
X. Nicolas ◽  
B. Trouette

This paper focuses on thermocouple air temperature measurement uncertainty due to the radiative fluxes present in the engine compartment where engine case skin temperature can exceed 900 K. To really measure air temperature, the convective heat flux in the thermocouple bead must be predominant. This is why heat shields are used in order to reduce the radiative heat flux on the bead. However, in engine compartment, the heat shield orientation must be optimized since numerous hot walls surround the thermocouple. In order to evaluate the impact of badly oriented heat shields and to provide a data bank for numerical simulation validations, a heated wind tunnel has been used. It has been shown that the uncertainty on the thermocouple temperature can reach dozens of degrees depending on the air speed and the heat shield orientation. Furthermore a specific 3D thermocouple model has been build and validated by comparison with the lab measurements. Then this thermocouple 3D model has been integrated in the whole engine compartment aero-thermal model in order to quantify the uncertainty of the thermocouple air temperature measurement in the real engine environment.


2017 ◽  
Vol 25 (2) ◽  
pp. 283-291 ◽  
Author(s):  
Sang-Wook Lee ◽  
Eun Uk Park ◽  
Byung Il Choi ◽  
Jong Chul Kim ◽  
Sang-Bong Woo ◽  
...  

2014 ◽  
Vol 1041 ◽  
pp. 371-374
Author(s):  
Radoslav Ponechal ◽  
Jaroslav Leštach

New requirements for the thermal performance of building structures also affect heating equipment solutions. A specific problem is the future of the local heaters in the following well-insulated houses in terms of overheating. This paper discussed some results of the dry bulb air temperature measurement in one of these houses. The article further reported list of the local wood-burning stoves with respect to the calculated heat loss in these houses isolated on the requirements of the standard in 2016 and in 2021.


Author(s):  
Mohd Fadthul Ikmal Misnal ◽  
Norizah Redzuan ◽  
Muhamad Nor Firdaus Zainal ◽  
Norhayati Ahmad ◽  
Raja Kamarulzaman Raja Ibrahim ◽  
...  

2021 ◽  
Author(s):  
Julien G. Anet ◽  
Sebastian Schlögl ◽  
Curdin Spirig ◽  
Martin P. Frey ◽  
Manuel Renold ◽  
...  

<p>With progressive climate change, weather extremes are very likely to become more frequent. While rural regions may suffer from more intense and longer drought periods, urban spaces are going to be particularly affected by severe heat waves. This urban temperature anomaly, also known as “urban heat island” (UHI), can be traced back to different factors, the most prominent being soil sealing, lower albedo and lack of effective ventilation.</p><p>City planners have started developing mitigation strategies to reduce future forecasted heat stress in urban regions. While some heat reduction strategies are currently intensely scrutinized and applied within pilot projects, the efficiency of latter mitigation actions can be overseen due to the low density of reference in situ air temperature measurements in urban environments. The same problem applies when trying to benchmark modeling studies of UHI as the amount of benchmarking data may be insufficient.</p><p>To overcome this lack of data, over the last two years, a dense air temperature measurement network has been installed in the Swiss cities of Basel and Zurich, counting more than 450 sensors. The low-cost air temperature sensors are installed on street lamps and traffic signs in different local climate zones of the city with an emphasis on street canyons, where air temperatures are expected to be the largest and most of the city’s population lives and works. These low-cost sensors add valuable meteorological information in cities and complement the WMO reference stations.</p><p>Air temperature measurements from the low-cost sensor network were controlled for accuracy, reliability and robustness and homogenized in order to minimize radiation errors, although 40% of the stations were equipped with self-built radiation shields, allowing an efficient passive ventilation of the installed sensors.</p><p>We demonstrate the strength of our network by presenting first results of two exemplary heat waves that occurred in July 2019 and August 2020 and show that a) the radiation-error corrected datasets correlate well with different high-quality reference WMO stations, and b) the existence of urban heat islands in Zurich and Basel can be well confirmed, showing significant air temperature differences of several degrees between rural and urban areas.</p><p>The results demonstrate the advantages of a high-density low-cost air temperature network as a benchmark for future urban heat islands modelling studies.</p>


Sign in / Sign up

Export Citation Format

Share Document