scholarly journals The Heart Attack Detection by ESP8266 Data Communication at a Real Time to Avoid Sudden Death

2019 ◽  
Vol 1235 ◽  
pp. 012044
Author(s):  
Poltak Sihombing ◽  
Mangasa Manullang ◽  
Dahlan Sitompul ◽  
Imelda Sri Dumayanti
Author(s):  
Isna Fatimatuz Zahra ◽  
I Dewa Gede Hari Wisana ◽  
Priyambada Cahya Nugraha ◽  
Hayder J Hassaballah

Acute myocardial infarction, commonly referred to as a heart attack, is the most common cause of sudden death where a monitoring tool is needed that is equipped with a system that can notify doctors to take immediate action. The purpose of this study was to design a heart attack detection device through indicators of vital human signs. The contribution of this research is that the system works in real-time, has more parameters, uses wireless, and is equipped with a system to detect indications of a heart attack. In order for wireless monitoring to be carried out in real-time and supported by a detection system, this design uses a radio frequency module as data transmission and uses a warning system that is used for detection. Respiration rate was measured using the piezoelectric sensor, and body temperature was measured using the DS18B20 temperature sensor. Processing of sensor data is done with ESP32, which is displayed wirelessly by the HC-12 module on the PC. If an indication of a heart attack is detected in the parameter value, the tool will activate a notification on the PC. In every indication of a heart attack, it was found that this design can provide notification properly. The results showed that the largest respiratory error value was 4%, and the largest body temperature error value was 0.55%. The results of this study can be implemented in patients who have been diagnosed with heart attack disease so that it can facilitate monitoring the patient's condition.


2019 ◽  
Vol 8 (2) ◽  
pp. 1243-1248

In the real-time scenario involving wireless sensor networks, the data forwarding and data gathering procedures are taking place from the remote environment. With the involvement of heterogeneous architecture and multi-hop data transmission paths, there lies a serious threat for secured data communication. There may be chances of data attacks either from the inside intruder or from the external intruder. The problem of data flow attack by adding malicious information, viz. Data injection attack and outside arbitrary attack, viz. Byzantine attacks are found to be more dangerous and cause vulnerability for the wireless sensor network. So improving the reliability and security in multi-relay networks is very much essential. In this work, the practical approach of detecting data injection and Byzantine attacks using the proposed method of random network coding is performed. Then, as improvisation measure, the priority scheduling algorithm is implemented to effectively schedule the data transfer. Real-time packets with highest priority in the distribution queue are placed first in the processing mechanism. The remaining packets are arranged based on the position of the sensor nodes and are placed in separate queues. Least priority packets can obstruct the dispensation of their direct higher precedence packets after waitlisted for a certain number of time frames. Simulation results using the NS2 environment show that using the priority scheduling algorithm has good performance values in terms of the packet delivery ratio, throughput and delay. Also, the attack detection metrics such as false positive ratio and detection ratio are also improved when using the priority scheduling algorithm. Thus an improvised priority algorithm for an uplink scheduler in WSN is implemented to increase the performance and detection metrics.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2780 ◽  
Author(s):  
Muhammad E. H. Chowdhury ◽  
Khawla Alzoubi ◽  
Amith Khandakar ◽  
Ridab Khallifa ◽  
Rayaan Abouhasera ◽  
...  

Heart attack is one of the leading causes of human death worldwide. Every year, about 610,000 people die of heart attack in the United States alone—that is one in every four deaths—but there are well understood early symptoms of heart attack that could be used to greatly help in saving many lives and minimizing damages by detecting and reporting at an early stage. On the other hand, every year, about 2.35 million people get injured or disabled from road accidents. Unexpectedly, many of these fatal accidents happen due to the heart attack of drivers that leads to the loss of control of the vehicle. The current work proposes the development of a wearable system for real-time detection and warning of heart attacks in drivers, which could be enormously helpful in reducing road accidents. The system consists of two subsystems that communicate wirelessly using Bluetooth technology, namely, a wearable sensor subsystem and an intelligent heart attack detection and warning subsystem. The sensor subsystem records the electrical activity of the heart from the chest area to produce electrocardiogram (ECG) trace and send that to the other portable decision-making subsystem where the symptoms of heart attack are detected. We evaluated the performance of dry electrodes and different electrode configurations and measured overall power consumption of the system. Linear classification and several machine algorithms were trained and tested for real-time application. It was observed that the linear classification algorithm was not able to detect heart attack in noisy data, whereas the support vector machine (SVM) algorithm with polynomial kernel with extended time–frequency features using extended modified B-distribution (EMBD) showed highest accuracy and was able to detect 97.4% and 96.3% of ST-elevation myocardial infarction (STEMI) and non-ST-elevation MI (NSTEMI), respectively. The proposed system can therefore help in reducing the loss of lives from the growing number of road accidents all over the world.


Author(s):  
Muhammad E.H. Chowdhury ◽  
Amith Khandakar ◽  
Yazan Qiblawey ◽  
Mamun Bin Ibne Reaz ◽  
Mohammad Tariqul Islam ◽  
...  

Wearable technology has added a whole new dimension in the healthcare system by real-time continuous monitoring of human body physiology. They are used in daily activities and fitness monitoring and have even penetrated in monitoring the health condition of patients suffering from chronic illnesses. There are a lot of research and development activities being pursued to develop more innovative and reliable wearable. This chapter will cover discussions on the design and implementation of wearable devices for different applications such as real-time detection of heart attack, abnormal heart sound, blood pressure monitoring, gait analysis for diabetic foot monitoring. This chapter will also cover how the signals acquired from these prototypes can be used for training machine learning (ML) algorithm to diagnose the condition of the person wearing the device. This chapter discusses the steps involved in (i) hardware design including sensors selection, characterization, signal acquisition, and communication to decision-making subsystem and (ii) the ML algorithm design including feature extraction, feature reduction, training, and testing. This chapter will use the case study of the design of smart insole for diabetic foot monitoring, wearable real-time heart attack detection, and smart-digital stethoscope system to show the steps involved in the development of wearable biomedical systems.


2019 ◽  
Vol 8 (2) ◽  
pp. 6371-6377

Vehicular Ad Hoc Networks (VANETs) is an emerging wireless data communication technology in computer network, which communicates dynamically to exchange and share real time information between vehicles on roads. This network architecture considers vehicles as nodes and information as packets for communication. Vehicles create an autonomous network with assistance of RSU (Road Side Units). This technology supports real time alert systems to broadcast emergency messages to the police, ambulance and drivers of the vehicles in some unexpected situations like traffic emergency, accident, road conditions, vehicle tracking, whether conditions and message monitoring. Since these nodes operate in a physically insecure environment in the range of 100 to 300 meters circumference. Security is a challenging issue for the technology to provide secured prominent approach for routing. Like other networks VANET network is also prone to various attacks. Timing and DoS is done by capturing the messages in VANET and replaying them at later point of time in bulk, such that RSU and vehicle resources are wasted in processing those messages. We need to have a technology by virtue of which network nodes (vehicles) should be smart enough to manage road safety at their own. In this paper RSU assisted DoS attack detection and prevention technique is proposed for VANET. The proposed method is based on RSU message temporal signature with detection and prevention, build over the RSU message attestation technique


2020 ◽  
Author(s):  
Suchitra Giri ◽  
Ujjwal Kumar ◽  
Varsha Sharma ◽  
Satish Kumar ◽  
Sikha Kumari ◽  
...  

Author(s):  
Yuvraj Sanjayrao Takey ◽  
Sai Gopal Tatikayala ◽  
Satyanadha Sarma Samavedam ◽  
P R Lakshmi Eswari ◽  
Mahesh Uttam Patil

2012 ◽  
Vol 580 ◽  
pp. 155-159
Author(s):  
Xiang Ming Wang ◽  
Jin Chao Wang ◽  
Dong Hua Sun

In this paper, the real-time EtherCAT technology is introduced in detail, which including operating principle, communication protocol and the superiority performance of EtherCAT i.e. synchronicity, simultaneousness and high speed. To show how to design a slave system that considering the characteristics of application, the method of developing systems based no EtherCAT technology are proposed. Finally, a data acquisition system based on EtherCAT technology is designed. Application of EtherCAT technology can improve the real-time characteristics of data communication in wind power system.


2021 ◽  
Vol 7 (1) ◽  
pp. 43-48
Author(s):  
Agung Raharjo ◽  
Eko Kuncoro ◽  
Imam Azhar

Seiring dengan perkembangan teknologi komunikasi dan otomasi, pelaksanaan tugas militer dapat dibantu dengan mengembangkan alutsista militer. Salah satunya pengembangan robot tempur yang akan digunakan sebagai alat untuk membantu tugas operasi jarak jauh pada satuan tempur TNI AD. Pada robot tempur tersebut akan ditanamkan sistem komunikasi data berupa perintah kendali laju robot, perintah kendali senjata serang, dan sistem visualisasi yang dapat digunakan untuk mendukung pergerakan robot hingga mencapai sasaran yang ditentukan, serta sebagai sistem penginderaan jarak jauh robot tempur untuk memonitor area musuh yang akan ditinjau. Operator menggunakan sebuah joystick untuk mengendalikan robot tempur dan tablet Android untuk memantau dan mendeteksi arah sasaran. Penelitian ini membahas tentang perancangan pendeteksian sasaran tembak yang dapat dikendalikan dari jarak jauh. Metode yang digunakan adalah metode eksperimen berbasis PID. Penelitian ini berfokus pada pendeteksian sasaran tembak yang nantinya akan terhubung dengan Raspberry Pi 3, sehingga senjata dapat mendeteksi adanya sasaran tembak yang ada di dalam jangkauan sensor posisi. Hasil dari penelitian menunjukkan bahwa robot dapat dikendalikan dengan mudah menggunakan joystick dan secara real-time terlihat pada layar Android yang terpasang pada kontrol joystick tersebut. Selain itu, sistem juga dapat membedakan antara sasaran tembak dan objek yang bukan sasaran tembak. Penelitian ini diharapkan dapat mendukung tugas operasi personel TNI dalam menjalankan misinya dengan memanfaatkan robot tempur. Along with the development of communication and automation technology, the implementation of military duties can be assisted by developing military defense equipment. One of them is the development of a combat robot that will be used as a tool to assist the task of long-distance operations on the Army combat unit. In the combat robot, a data communication system will be implanted in the form of a robot rate control command, an attack weapon control command, and a visualization system that is used to support the robot's movement to reach the target specified as a combat robot's remote sensing system for monitoring enemy areas to be reviewed. The operator has used a joystick to control the combat robot and to detect the direction of the target can be monitored with an android tablet. This research discusses the design of the detection of target fire that can be controlled remotely. The method used is experimental based on PID. This research focused on detecting firing targets that will be connected with Raspberry Pi 3 so that the weapon can detect the presence of firing targets within the position sensor. The results of the research show that the robot can be easily controlled using a Joystick and in real-time visible on the Android screen mounted on the Joystick control, the system can distinguish between target shooting and non-target objects. This research is expected to support the operational duties of army personnel in carrying out their missions by utilizing combat robots.


Sign in / Sign up

Export Citation Format

Share Document