scholarly journals Embryogenesis Callus Induction of Carica pubescens Using Divine Smoke Particulates Containing Amino Acids

2019 ◽  
Vol 1241 ◽  
pp. 012004
Author(s):  
Shinta ◽  
S R N Effendi ◽  
I Rofiqoh
2015 ◽  
Vol 10 (5) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Aya Inoue ◽  
Shinjiro Ogita ◽  
Shinpei Tsuchiya ◽  
Reiko Minagawa ◽  
Hamako Sasamoto

Callus induction, maintenance and protoplast cultures were achieved from immature seeds of a woody leguminous mangrove, Caesalpinia crista. Axenic cultures were possible during 1.5 months of pod storage in 0.1% benzalkonium chloride solution. Callus induction was achieved using 1 mL liquid medium in a 10 mL flat-bottomed culture tube. Protoplasts were isolated using Cellulase R10, Hemicellulase, and Driselase 20 in 0.6 M mannitol solution and sub-culturable calluses were obtained in 50 μL liquid medium using a 96-microplate method. The optimal hormonal concentration was 10 μM each of 2,4-dichlorophenoxyacetic acid and benzyladenine in liquid Murashige and Skoog's basal medium for both callus induction and maintenance, and protoplast cultures. Similarities and differences in amino acid profiles and culture conditions are discussed among woody mangrove species and non-mangrove leguminous species. Caesalpinia crista cultures were unique as they secreted a large amount of amino acids, including proline, into the liquid culture medium.


2015 ◽  
Vol 25 (1) ◽  
pp. 37-50 ◽  
Author(s):  
Mozidul Haque ◽  
Abu Baker Siddique ◽  
SM Shahinul Islam

Three Bangladeshi barley genotypes viz. BARI barley?1, 3 and 6 were selected for this study to evaluate the efficiency of callus induction and plant regeneration. The effect of five doses of AgNO3 singly, and combined with amino acids (Lproline, L?glutamine) on callus induction and plant regeneration efficiency was evaluated using BARI barley?3 and 6. The maximum values of callus induction were recorded at 49.20 and 32.66% for BARI barley?6 and 3, respectively when 2.0 mg/l AgNO3 and 200 mg/l L?glutamine were added to the callus induction medium. Moreover, plant regeneration remarkably increased on MS + 1.0 mg/l BAP + 1.5 mg/l AgNO3 + 150 mg/l L?glutamine as 37.20% in BARI barley?6 and 16.13% in BARI barley?3. For rooting AgNO3 singly affect positively, whereas negative influence was observed in combinations with any amino acids. However, by using AgNO3 and amino acids, around < 4, < 27 and < 5 fold increase in callus induction were obtained. Regeneration and rooting were also found to increase considerably.Plant Tissue Cult. & Biotech. 25(1): 37-50, 2015 (June)


1997 ◽  
Vol 161 ◽  
pp. 505-510
Author(s):  
Alexandra J. MacDermott ◽  
Laurence D. Barron ◽  
Andrè Brack ◽  
Thomas Buhse ◽  
John R. Cronin ◽  
...  

AbstractThe most characteristic hallmark of life is its homochirality: all biomolecules are usually of one hand, e.g. on Earth life uses only L-amino acids for protein synthesis and not their D mirror images. We therefore suggest that a search for extra-terrestrial life can be approached as a Search for Extra- Terrestrial Homochirality (SETH). The natural choice for a SETH instrument is optical rotation, and we describe a novel miniaturized space polarimeter, called the SETH Cigar, which could be used to detect optical rotation as the homochiral signature of life on other planets. Moving parts are avoided by replacing the normal rotating polarizer by multiple fixed polarizers at different angles as in the eye of the bee. We believe that homochirality may be found in the subsurface layers on Mars as a relic of extinct life, and on other solar system bodies as a sign of advanced pre-biotic chemistry. We discuss the chiral GC-MS planned for the Roland lander of the Rosetta mission to a comet and conclude with theories of the physical origin of homochirality.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


Author(s):  
E.M. Kuhn ◽  
K.D. Marenus ◽  
M. Beer

Fibers composed of different types of collagen cannot be differentiated by conventional electron microscopic stains. We are developing staining procedures aimed at identifying collagen fibers of different types.Pt(Gly-L-Met)Cl binds specifically to sulfur-containing amino acids. Different collagens have methionine (met) residues at somewhat different positions. A good correspondence has been reported between known met positions and Pt(GLM) bands in rat Type I SLS (collagen aggregates in which molecules lie adjacent to each other in exact register). We have confirmed this relationship in Type III collagen SLS (Fig. 1).


Author(s):  
R. W. Yaklich ◽  
E. L. Vigil ◽  
W. P. Wergin

The legume seed coat is the site of sucrose unloading and the metabolism of imported ureides and synthesis of amino acids for the developing embryo. The cell types directly responsible for these functions in the seed coat are not known. We recently described a convex layer of tissue on the inside surface of the soybean (Glycine max L. Merr.) seed coat that was termed “antipit” because it was in direct opposition to the concave pit on the abaxial surface of the cotyledon. Cone cells of the antipit contained numerous hypertrophied Golgi apparatus and laminated rough endoplasmic reticulum common to actively secreting cells. The initial report by Dzikowski (1936) described the morphology of the pit and antipit in G. max and found these structures in only 68 of the 169 seed accessions examined.


Author(s):  
S.A.C. Gould ◽  
B. Drake ◽  
C.B. Prater ◽  
A.L. Weisenhorn ◽  
S.M. Lindsay ◽  
...  

The atomic force microscope (AFM) is an instrument that can be used to image many samples of interest in biology and medicine. Images of polymerized amino acids, polyalanine and polyphenylalanine demonstrate the potential of the AFM for revealing the structure of molecules. Images of the protein fibrinogen which agree with TEM images demonstrate that the AFM can provide topographical data on larger molecules. Finally, images of DNA suggest the AFM may soon provide an easier and faster technique for DNA sequencing.The AFM consists of a microfabricated SiO2 triangular shaped cantilever with a diamond tip affixed at the elbow to act as a probe. The sample is mounted on a electronically driven piezoelectric crystal. It is then placed in contact with the tip and scanned. The topography of the surface causes minute deflections in the 100 μm long cantilever which are detected using an optical lever.


Sign in / Sign up

Export Citation Format

Share Document