scholarly journals Thermodynamic model of the metal-ceramic coating formation on titanium surface by laser treatment

2019 ◽  
Vol 1281 ◽  
pp. 012051
Author(s):  
V N Lyasnikov ◽  
S V Telegin ◽  
I P Grishina ◽  
A V Lyasnikova ◽  
O A Markelova ◽  
...  
2018 ◽  
Vol 119 (5) ◽  
pp. 491-496 ◽  
Author(s):  
I. G. Zhevtun ◽  
P. S. Gordienko ◽  
S. B. Yarusova ◽  
Yu. N. Kul’chin ◽  
E. P. Subbotin ◽  
...  

2018 ◽  
Vol 226 ◽  
pp. 01015
Author(s):  
Evgeniy A. Chaschin ◽  
Konstantin I. Kurganov ◽  
Andrey A. Mitrofanov ◽  
Andrey H. Kharakhashev ◽  
Mikhail M. Klimov

The results of the researches which determine the dependence of gas-thermal coating porosity on the laser radiation parameters are given in the article. The coatings which are based on the metallic (PN-85-U-15) and non-metallic (Al2O3) components were analyzed. The quantitative assessment of porosity modification were realized by means of the based on Visual Studio 2008 program. This image processing program allows to compare the microstructure of the occupied by pores and coating material areas pixel-by-pixel. It has been established that the action of laser radiation leads to reduction of average porosity of gas-thermal coating. This reduction is: 1. the porosity in the initial position for coating of a PN 85-U-15-based alloy is 17%; after the laser treatment it’s 5-8%; 2.- the porosity in the initial position for ceramic coating of Al2O3is 24,5%; after the laser treatment it’s 15-18%.


1995 ◽  
Vol 76-77 ◽  
pp. 86-94 ◽  
Author(s):  
A.S. Osyka ◽  
A.I. Rybnikov ◽  
S.A. Leontiev ◽  
N.V. Nikitin ◽  
I.S. Malashenko

2007 ◽  
Vol 353-358 ◽  
pp. 1733-1736 ◽  
Author(s):  
Fei Chen ◽  
Hai Zhou ◽  
Chen Chen ◽  
Fan Xiu Lu ◽  
Fan Xiu Lu

Oxidation ceramic coating was directly synthesized on LY12 aluminium alloy by micro-arc oxidation (MAO) process in Na2SiO3 electrolyte solution with the Na2WO4-KOH-Na2EDTA addition. The corrosion resistance of the coating was tested using CS300P electrochemical corrosion workshop in 3.5% NaCl solution. Using the scanning electron microscopy (SEM) and X-ray diffraction (XRD), the cross-section microstructure, the surface morphology and the phase structure of the micro-arc oxidation ceramic coating were analyzed. The results showed that the corrosion resistance of the micro-arc oxidation ceramic coating in 3.5% NaCl solution was enhanced remarkably, the corrosion velocity was obviously slowed down. The thickness of micro-arc oxidation ceramic coating was about 11μm. The final phases in the coating were found to be α-Al2O3 and γ-Al2O3. The mechanism of the oxidation ceramic coating formation was investigated too.


2007 ◽  
Vol 353-358 ◽  
pp. 1645-1648 ◽  
Author(s):  
Dong Chu Chen ◽  
Wen Fang Li ◽  
Jun Jie

A new micro-arc oxidation method with a home-made asymmetric alternating-current (ac) power supply for forming an anti-corrosion ceramic coating on AZ91D magnesium alloy was presented, and two different silicate-based and aluminate-based preparing solutions were introduced to coating formation. The effect of many processing parameters on the growth and performance of the formed ceramic coating was investigated. It was found that the electrolyte concentration, current density, treating time duration and other parameters have significant influence on the coating morphology and anti-corrosion performance. Through the polarization curve test, it showed that the coating oxidized in silicate solution has better corrosion-resistance due to its continuous and compact structure than that formed in aluminate solution. The morphology and microstructure of the coating were analyzed through SEM, XRD technology. The coating consists of two layers, i.e., loose layer and compact layer. The compositions and phase structures varied with electrolytes, and it was found that the micro-arc oxidation coating prepared in silicate solution is composed of MgO and Mg2SiO4, while the coating prepared in aluminate is mainly composed of MgAl2O4.


Author(s):  
I. D. Parfimovich ◽  
F. F. Komarov ◽  
O. V. Milchanin ◽  
A. G. Tkachev ◽  
O. R. Lyudchik ◽  
...  

Author(s):  
Наталья Витальевна Зайцева ◽  
Жанна Владимировна Вечеркина ◽  
Михаил Анатольевич Крючков ◽  
Виктор Сергеевич Калиниченко ◽  
Николай Валерьевич Морозов ◽  
...  

Вопреки доказанным преимуществам автоматизации зуботехнической лаборатории с помощью компьютерных технологий, изготовление металлокерамическмх несъемных коронок и мостовидных протезов остается востребованным в ортопедической стоматологи видом конструкции. Большой клинический опыт, отработанные технологии, надёжность и относительная простота изготовления дают им неоспоримые положительные качества. И главным моментов, определяющим их качество, долговечность и эффективность заключается в опыте, тандеме работы врача стоматолога-ортопеда и зубного мастера, и конечно же в грамотности выполнения пошаговой последовательности керамического моделирования облицовки выбранной комбинированной конструкции. Изготовление металлокерамических коронок небольшой толщины требует от зубного техника владения различными методиками нанесения керамической облицовки, знаний свойств и особенностей масс мировых производителей, тщательного соблюдения всех этапов и грамотной работы с цветовой палитрой. Создание металлокерамической конструкции предполагает последовательное получение металлического каркаса, на которй в последующем послойно наносят керамическую массу, а затем проводят ее обжиг. Среди технологических операций при создании облицовки цельнолитого металлического каркаса несъемного протеза из металлокерамики следует веделить следующие аспекты: подготовка каркаса протеза, выбор, подготовка и нанесение керамической массы, моделирование и обжиг грунтового слоя, нанесение дентинной массы, этап глазурирования. В научной работе, проведенной сотрудниками кафедры пропедевтической стоматологии ранее, дана характеристика методов моделирования керамической массы, были подробно изложены основные аспекты по обработке керамической массы горячим воздухом, формированию основного слоя керамического покрытия. В последующем, убедившись в высоком качестве грунтового покрытия, переходят к моделированию и обжигу дентинного слоя керамики. В данной статье описана подробная техника нанесения компоненотов керамических масс на опаковой слой керамической массы. Представленный метод трехэтапного нанесения керамического покрытия при изготовлении металлокерамических зубных протезов отвечает всем требованиям моделирования керамики. Следует обратить внимание на точное соблюдение правил послойного нанесения и конденсации керамических масс. Нанесение отдельных слоев керамической массы предполагает наличие опыта у зубного техника Despite the proven advantages of dental laboratory automation using computer technologies, the production of metal-ceramic fixed crowns and bridges remains a popular type of construction in orthopedic dentistry. Extensive clinical experience, proven technologies, reliability and relative ease of manufacture give them undeniable positive qualities. And the main factor that determines their quality, durability and effectiveness is the experience, the tandem work of the dentist-orthopedist and dental master, and of course the literacy of performing a step-by-step sequence of ceramic modeling of the selected combined structure. The production of metal-ceramic crowns of small thickness requires the dental technician to know various methods of applying ceramic cladding, to know the properties and features of the world's leading manufacturers, to carefully observe all stages and to work correctly with the color palette. The creation of a metal-ceramic structure involves the sequential production of a metal frame, on which the ceramic mass is subsequently applied in layers, and then it is fired. Among the technological operations when creating the veneer-cast metal framework removable denture-metal should be wadelite the following aspects: preparation of a denture, the choice, preparation and application of the ceramic mass, the modeling and firing the base coat, applying the dentinal mass, the stage of glazing applications. In the scientific work carried out by the staff of the Department of propaedeutic dentistry earlier, the characteristic of methods for modeling the ceramic mass was given, the main aspects of processing the ceramic mass with hot air, and the formation of the main layer of the ceramic coating were described in detail. After making sure that the high quality of the ground coating is used, they proceed to modeling and firing the dentin layer of ceramics. This article describes a detailed technique for applying ceramic mass components to the opaque layer of the ceramic mass. The presented method of three-stage application of ceramic coating in the manufacture of metal-ceramic dentures meets all the requirements of modeling ceramics. You should pay attention to the exact observance of the rules of layering and condensation of ceramic masses


Author(s):  
Xiaoman Zhang ◽  
Yang Mu ◽  
Shuai Shao ◽  
Collin Wick ◽  
Ramu Ramachandran ◽  
...  

Mechanical failures of interfacial regions of ceramic-coating/metal-adhesion-layer/substrate systems were measured quantitatively and observed concurrently through instrumented microscale mechanical testing in-situ a scanning electron microscope (SEM). Failure of the interfacial regions of coating/interlayer/substrate systems was observed in micro-pillar specimens in-situ under different loading conditions, including shear, compression, and tension. Under shear loading, shear failure of the interfacial region was observed to occur in two stages: an initial uniform shear plastic deformation of the entire metal interlayer followed by an unstable shear-off close to the metal/ceramic interface. Additional testing under compression loading conditions suggests that the unstable shear-off is concomitant with the metal/ceramic interface going from being “locked”, with no relative displacement between materials on the two sides of the interface, to being “unlocked”, with significant relative displacements. Failure of the interfacial region was also observed under tensile loading conditions. Density functional theory (DFT) and molecular dynamics (MD) studies on one particular metal/ceramic interface, namely Ti/TiN, showed that a weak interaction plane exists in the metal layer near the chemical interface in a coherent Ti/TiN structure. Consequently, the free energy and theoretical shear strength of the semi-coherent Ti/TiN interface is found to depend on the physical location of the misfit dislocation network (MDN). The minimum energy and strength of the interface occur when the MDN is near, but not at the chemical interface. The present work gives new insight into the nature of mechanical failure of metal/ceramic interfaces, is relevant to materials-based engineering of metal/ceramic interfaces, and has applications to engineering of ceramic coating/substrate systems.


Sign in / Sign up

Export Citation Format

Share Document