scholarly journals Research on high-speed measurement accuracy of coordinate measuring machines

2005 ◽  
Vol 13 ◽  
pp. 167-170 ◽  
Author(s):  
J Zhao ◽  
Y T Fei ◽  
X H Chen ◽  
H T Wang
2014 ◽  
Vol 596 ◽  
pp. 468-471
Author(s):  
Tao Hou ◽  
Duo Wang Fan ◽  
Hong Xia Niu

For the problem of a big velocity measurement error,analyzed the velocity measurement error and studied the method of improving velocity measurement accuracy for the velocity measuring system of high-speed train.In this analysis and method, the speed error analysis was carried out based on understand the characteristics of the high-speed train speed sensor, and found that there is a bigger error. Then discussed the influence of large errors of the control system, and then put forward the improved M/T speed measurement method to solve the error problem. Finally, calculated velocity-measuring error for the improved M/T speed measurement method. The results show that the accuracy of speed has improved greatly. The research method can improve the accuracy to meet the requiring of train safety and smooth run.


2021 ◽  
Vol 11 (13) ◽  
pp. 5787
Author(s):  
Toan-Thang Vu ◽  
Thanh-Tung Vu ◽  
Van-Doanh Tran ◽  
Thanh-Dong Nguyen ◽  
Ngoc-Tam Bui

The measurement speed and measurement accuracy of a displacement measuring interferometer are key parameters. To verify these parameters, a fast and high-accuracy motion is required. However, the displacement induced by a mechanical actuator generates disadvantageous features, such as slow motion, hysteresis, distortion, and vibration. This paper proposes a new method for a nonmechanical high-speed motion using an electro-optic modulator (EOM). The method is based on the principle that all displacement measuring interferometers measure the phase change to calculate the displacement. This means that the EOM can be used to accurately generate phase change rather than a mechanical actuator. The proposed method is then validated by placing the EOM into an arm of a frequency modulation interferometer. By using two lock-in amplifiers, the phase change in an EOM and, hence, the corresponding virtual displacement could be measured by the interferometer. The measurement showed that the system could achieve a displacement at 20 kHz, a speed of 6.08 mm/s, and a displacement noise level < 100 pm//√Hz above 2 kHz. The proposed virtual displacement can be applied to determine both the measurement speed and accuracy of displacement measuring interferometers, such as homodyne interferometers, heterodyne interferometers, and frequency modulated interferometers.


2021 ◽  
Vol 92 (5) ◽  
pp. 054701
Author(s):  
T. Hennen ◽  
E. Wichmann ◽  
A. Elias ◽  
J. Lille ◽  
O. Mosendz ◽  
...  

Author(s):  
Yu Hirano ◽  
Masaru Kojima ◽  
Mitsuhiro Horade ◽  
Kazuto Kamiyama ◽  
Yasushi Mae ◽  
...  

1991 ◽  
Vol 224 ◽  
Author(s):  
C. Schietinger ◽  
B. Adams ◽  
C. Yarling

AbstractA novel wafer temperature and emissivity measurement technique for rapid thermal processing (RTP) is presented. The ‘Ripple Technique’ takes advantage of heating lamp AC ripple as the signature of the reflected component of the radiation from the wafer surface. This application of Optical Fiber Thermometry (OFT) allows high speed measurement of wafer surface temperatures and emissivities. This ‘Ripple Technique’ is discussed in theoretical and practical terms with wafer data presented. Results of both temperature and emissivity measurements are presented for RTP conditions with bare silicon wafers and filmed wafers.


2021 ◽  
Vol 11 (11) ◽  
pp. 5244
Author(s):  
Xinchun Zhang ◽  
Ximin Cui ◽  
Bo Huang

The detection of track geometry parameters is essential for the safety of high-speed railway operation. To improve the accuracy and efficiency of the state detector of track geometry parameters, in this study we propose an inertial GNSS odometer integrated navigation system based on the federated Kalman, and a corresponding inertial track measurement system was also developed. This paper systematically introduces the construction process for the Kalman filter and data smoothing algorithm based on forward filtering and reverse smoothing. The engineering results show that the measurement accuracy of the track geometry parameters was better than 0.2 mm, and the detection speed was about 3 km/h. Thus, compared with the traditional Kalman filter method, the proposed design improved the measurement accuracy and met the requirements for the detection of geometric parameters of high-speed railway tracks.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4348 ◽  
Author(s):  
Wei Liu ◽  
Xin Ma ◽  
Xiao Li ◽  
Yi Pan ◽  
Fuji Wang ◽  
...  

Nowadays, due to the advantages of non-contact and high-speed, vision-based pose measurements have been widely used for aircraft performance testing in a wind tunnel. However, usually glass ports are used to protect cameras against the high-speed airflow influence, which will lead to a big measurement error. In this paper, to further improve the vision-based pose measurement accuracy, an imaging model which considers the refraction light of the observation window was proposed. In this method, a nonlinear camera calibration model considering the refraction brought by the wind tunnel observation window, was established first. What’s more, a new method for the linear calibration of the normal vector of the glass observation window was presented. Then, combining with the proposed matching method based on coplanarity constraint, the six pose parameters of the falling target could be calculated. Finally, the experimental setup was established to conduct the pose measurement study in the laboratory, and the results satisfied the application requirements. Besides, experiments for verifying the vision measurement accuracy were also performed, and the results indicated that the displacement and angle measurement accuracy approximately increased by 57% and 33.6%, respectively, which showed the high accuracy of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document