scholarly journals A Novel Vision-Based Pose Measurement Method Considering the Refraction of Light

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4348 ◽  
Author(s):  
Wei Liu ◽  
Xin Ma ◽  
Xiao Li ◽  
Yi Pan ◽  
Fuji Wang ◽  
...  

Nowadays, due to the advantages of non-contact and high-speed, vision-based pose measurements have been widely used for aircraft performance testing in a wind tunnel. However, usually glass ports are used to protect cameras against the high-speed airflow influence, which will lead to a big measurement error. In this paper, to further improve the vision-based pose measurement accuracy, an imaging model which considers the refraction light of the observation window was proposed. In this method, a nonlinear camera calibration model considering the refraction brought by the wind tunnel observation window, was established first. What’s more, a new method for the linear calibration of the normal vector of the glass observation window was presented. Then, combining with the proposed matching method based on coplanarity constraint, the six pose parameters of the falling target could be calculated. Finally, the experimental setup was established to conduct the pose measurement study in the laboratory, and the results satisfied the application requirements. Besides, experiments for verifying the vision measurement accuracy were also performed, and the results indicated that the displacement and angle measurement accuracy approximately increased by 57% and 33.6%, respectively, which showed the high accuracy of the proposed method.

2012 ◽  
Vol 523-524 ◽  
pp. 842-846 ◽  
Author(s):  
Takuya Kojima ◽  
Koji Usuki ◽  
Takao Kitayama ◽  
Daisuke Tonaru ◽  
Hiroki Matsumura ◽  
...  

The development of a high-speed nanoprofiler is essential for developing the next generation of ultraprecision aspheric mirrors. The purpose of this study is to develop a new high-speed nanoprofiler that traces the normal vector of an aspheric mirror surface. The method of measurement adopted here is based upon the accuracy of a rotation goniometer. In order to attain a form measurement accuracy of PV1nm, it is necessary to improve the angle measurement accuracy. In this study, we equip a nanoprofiler with a rotary encoder that is calibrated in order to accomplish this objective, using a national standard machine. Consequently, this rotary encoder can be calibrated with an accuracy of ±0.12 μrad when considering the influence of installing the encoder on the nanoprofiler.


2022 ◽  
Author(s):  
Shomik Verma ◽  
Miguel Rivera ◽  
David O. Scanlon ◽  
Aron Walsh

Understanding the excited state properties of molecules provides insights into how they interact with light. These interactions can be exploited to design compounds for photochemical applications, including enhanced spectral conversion of light to increase the efficiency of photovoltaic cells. While chemical discovery is time- and resource-intensive experimentally, computational chemistry can be used to screen large-scale databases for molecules of interest in a procedure known as high-throughput virtual screening. The first step usually involves a high-speed but low-accuracy method to screen large numbers of molecules (potentially millions) so only the best candidates are evaluated with expensive methods. However, use of a coarse first-pass screening method can potentially result in high false positive or false negative rates. Therefore, this study uses machine learning to calibrate a high-throughput technique (xTB-sTDA) against a higher accuracy one (TD-DFT). Testing the calibration model shows a ~5-fold decrease in error in-domain and a ~3-fold decrease out-of-domain. The resulting mean absolute error of ~0.14 eV is in line with previous work in machine learning calibrations and out-performs previous work in linear calibration of xTB-sTDA. We then apply the calibration model to screen a 250k molecule database and map inaccuracies of xTB-sTDA in chemical space. We also show generalizability of the workflow by calibrating against a higher-level technique (CC2), yielding a similarly low error. Overall, this work demonstrates machine learning can be used to develop a both cheap and accurate method for large-scale excited state screening, enabling accelerated molecular discovery across a variety of disciplines.


2011 ◽  
Vol 305 ◽  
pp. 372-377
Author(s):  
Ke Zhang ◽  
Han Pin Luo

Computer stereo vision has been paid high attention in areas such as industry measurement and automatic control. Calibration of stereo vision system is a key step to implement vision measurement. Nonlinear calibration method involves too many parameters and too complex function, so the processing of optimization is difficult and slow. In this paper, two digital cameras are used to set up stereo vision system which provides convenient experimental operation. The binocular stereo vision system is calibrated using linear calibration model. The results indicate that the method is stable and fast with high precision and practicability.


2021 ◽  
Vol 11 (13) ◽  
pp. 5787
Author(s):  
Toan-Thang Vu ◽  
Thanh-Tung Vu ◽  
Van-Doanh Tran ◽  
Thanh-Dong Nguyen ◽  
Ngoc-Tam Bui

The measurement speed and measurement accuracy of a displacement measuring interferometer are key parameters. To verify these parameters, a fast and high-accuracy motion is required. However, the displacement induced by a mechanical actuator generates disadvantageous features, such as slow motion, hysteresis, distortion, and vibration. This paper proposes a new method for a nonmechanical high-speed motion using an electro-optic modulator (EOM). The method is based on the principle that all displacement measuring interferometers measure the phase change to calculate the displacement. This means that the EOM can be used to accurately generate phase change rather than a mechanical actuator. The proposed method is then validated by placing the EOM into an arm of a frequency modulation interferometer. By using two lock-in amplifiers, the phase change in an EOM and, hence, the corresponding virtual displacement could be measured by the interferometer. The measurement showed that the system could achieve a displacement at 20 kHz, a speed of 6.08 mm/s, and a displacement noise level < 100 pm//√Hz above 2 kHz. The proposed virtual displacement can be applied to determine both the measurement speed and accuracy of displacement measuring interferometers, such as homodyne interferometers, heterodyne interferometers, and frequency modulated interferometers.


2011 ◽  
Vol 97-98 ◽  
pp. 698-701
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Li Lu ◽  
Chen Guang Fan

Large eddy simulation (LES) was made to solve the flow around two simplified CRH2 high speed trains passing by each other at the same speed base on the finite volume method and dynamic layering mesh method and three dimensional incompressible Navier-Stokes equations. Wind tunnel experimental method of resting train with relative flowing air and dynamic mesh method of moving train were compared. The results of numerical simulation show that the flow field structure around train is completely different between wind tunnel experiment and factual running. Two opposite moving couple of point source and point sink constitute the whole flow field structure during the high speed trains passing by each other. All of streamlines originate from point source (nose) and finish with the closer point sink (tail). The flow field structure around train is similar with different vehicle speed.


2016 ◽  
Vol 29 (4) ◽  
pp. 465-473 ◽  
Author(s):  
Na Jin Seo ◽  
Mojtaba F. Fathi ◽  
Pilwon Hur ◽  
Vincent Crocher

2011 ◽  
Vol 128-129 ◽  
pp. 85-91
Author(s):  
Yi Fan Zeng ◽  
Rui Li

This paper proposes a novel method called arithmetic operations to analyze and process the generated voltage-signal from the single pair-pole magnetic encoder. Dual orthogonal voltage-signals are generated by two vertical hall sensors which are placed in the bottom of a columned magnet. When signals pass A/D converter, the quadrant determination, arithmetic operations and nonlinear correction in FPGA chip are performed before the values of rotational angle are displayed on the LED. This paper also designs and implements the single pair-pole magnetic encoder which has advantages such as high-speed, high-resolution and high-accuracy in the area of angle measurement.


Sign in / Sign up

Export Citation Format

Share Document