scholarly journals Denoising Method for Underwater Acoustic Signals Based on Sparse Decomposition

2020 ◽  
Vol 1550 ◽  
pp. 032139
Author(s):  
Guanqun Huang ◽  
Yewei Xiao ◽  
Zhe Yin
Proceedings ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 11 ◽  
Author(s):  
Huichao Yan ◽  
Linmei Zhang

Underwater acoustic technology is a major method in current ocean research and exploration, which support the detection of seabed environment and marine life. However, the detection accuracy is directly affected by the quality of underwater acoustic signals collected by hydrophones. Hydrophones are efficient and important tools for collecting underwater acoustic signals. The collected signals of hydrophone often contain lots kinds of noise as the work environment is unknown and complex. Traditional signal denoising methods, such as wavelet analysis and empirical mode decomposition, product unsatisfied results of denoising. In this paper, a denoising method combining wavelet threshold processing and empirical mode decomposition is proposed, and correlation analysis is added in the signal reconstruction process. Finally, the experiment proves that the proposed denoising method has a better denoising performance. With the employment of the proposed method, the underwater acoustic signals turn smoothly and the signal drift of the collected hydroacoustic signal is improved. Comparing the signal spectrums of other methods, the spectral energy of the proposed denoising method is more concentrated, and almost no energy attenuation occurred.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5065
Author(s):  
Daniel Chaparro-Arce ◽  
Sergio Gutierrez ◽  
Andres Gallego ◽  
Cesar Pedraza ◽  
Felix Vega ◽  
...  

This paper presents a technique, based on the matrix pencil method (MPM), for the compression of underwater acoustic signals produced by boat engines. The compressed signal, represented by its complex resonance expansion, is intended to be sent over a low-bit-rate wireless communication channel. We demonstrate that the method can provide data compression greater than 60%, ensuring a correlation greater than 93% between the reconstructed and the original signal, at a sampling frequency of 2.2 kHz. Once the signal was reconstituted, a localization process was carried out with the time reversal method (TR) using information from four different sensors in a simulation environment. This process sought to achieve the identification of the position of the ship using only passive sensors, considering two different sensor arrangements.


2015 ◽  
Vol 137 (4) ◽  
pp. EL288-EL292 ◽  
Author(s):  
Yohann Brelet ◽  
Amélie Jarnac ◽  
Jérôme Carbonnel ◽  
Yves-Bernard André ◽  
André Mysyrowicz ◽  
...  

2020 ◽  
Vol 15 (5) ◽  
pp. 729-737
Author(s):  
Gong Chen ◽  
Lei Cai ◽  
Lv Zong ◽  
Yan Wang ◽  
Xin Yuan

Passive acoustic technology (PAT) is an important tool to acquire the passive acoustic signals from marine organisms. In this paper, PAT fish detection is introduced at great length, including the relevant instruments, signal processing methods, and workflow. Focusing on the key tasks of PAT fish detection, the authors proposed a sparse decomposition algorithm that extracts coherent ratio of passive fish acoustic signal, and designed a feature extraction method for that signal based on speech imitation technology. Experimental results demonstrate that the proposed sparse decomposition algorithm can detect fish acoustic signal accurately at low signal-to-noise ratios (SNRs), and the proposed feature extraction method can effectively extract fish acoustic signals from the marine background. The research results shed important new light on the protection and management of fishery resources in the seas and oceans.


2020 ◽  
Vol 19 (1) ◽  
pp. 148-154
Author(s):  
Jiao Zhang ◽  
Yaan Li ◽  
Wasiq Ali ◽  
Lian Liu

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4866 ◽  
Author(s):  
Xinwei Luo ◽  
Zihan Shen

Reliable and efficient sensing and tracking of multiple weak or time-varying frequency line components in underwater acoustic signals is the topic of this paper. We propose a method for automatic detection and tracking of multiple frequency lines in lofargram based on hidden Markov model (HMM). Instead of being directly subjected to frequency line tracking, the whole lofargram is first segmented into several sub-lofargrams. Then, the sub-lofargrams suspected to contain frequency lines are screened. In these sub-lofargrams, the HMM-based method is used for detection of multiple frequency lines. Using image stitching and statistical model method, the frequency lines with overlapping parts detected by different sub-lofargrams are merged to obtain the final detection results. The method can effectively detect multiple time-varying frequency lines of underwater acoustic signals while ensuring the performance under the condition of low signal-to-noise ratio (SNR). It can be concluded that the proposed algorithm can provide better multiple frequency lines sensing ability while greatly reducing the amount of calculations and providing potential techniques for feature sensing and tracking processing of unattended equipment such as sonar buoys and submerged buoys.


Sign in / Sign up

Export Citation Format

Share Document