scholarly journals Fractal lattice as an efficient thermoelectric device

2020 ◽  
Vol 1579 ◽  
pp. 012004
Author(s):  
Suvendu Chakraborty ◽  
Santanu K. Maiti
Author(s):  
Shaul Barkan

Cooling down solid state detecors, with other different way then liquid Nitrogen, is a goal of many vendors and customers since the invention of these detectors. THe disadvantage of the common way of liquid Nitrogen is first the inavailibility of the LN in many uses (like space military and any other applications that are not done inside a well organize Laboratory). The use of LN also considers as a Labor consumer in addition to the big dewar that has to be added to any detector for storing the LN, the boiling of the LN, may cause microphonics problesm and the refiling of the dewar in many Labs is a complicated process due to inconvenience location of the microscope.In this paper I will show a spectra result of 10mm2 SiLi detector for microanalysis use, cooled by peltier cooler. The peltier cooler has the advantage of non-microphonics and non-labor needed (like adding LN to the dewar).


2019 ◽  
Vol 80 (3) ◽  
pp. 45-51
Author(s):  
L. Anatychuk ◽  
N. Pasyechnikova ◽  
V. Naumenko ◽  
O. Zadorozhnyy ◽  
R. Kobylianskyi ◽  
...  

2021 ◽  
Vol 1865 (3) ◽  
pp. 032080
Author(s):  
Yang Liu ◽  
Chunyu Wu ◽  
Yang Li ◽  
Shuaifei Yang ◽  
Shuyang Wang ◽  
...  

2014 ◽  
Vol 43 (6) ◽  
pp. 2376-2383 ◽  
Author(s):  
R. Chavez ◽  
S. Angst ◽  
J. Hall ◽  
J. Stoetzel ◽  
V. Kessler ◽  
...  

2016 ◽  
Vol 685 ◽  
pp. 422-426
Author(s):  
Nikolai Belyakov ◽  
Igor Terletskii ◽  
Sergey Minaev ◽  
Sudarshan Kumar ◽  
Kaoru Maruta

A new system for converting combustion heat into electric power was proposed on the basis of countercurrent burner with thermoelectric element embedded in a wall separating incoming fresh mixture and combustion products. The wall serves as heat exchanger between combustion products and the fresh mixture. Numerical simulations showed that almost whole combustion heat may be transferred through the thermoelectric element in such system and the total thermal efficiency attained a value close to the conversion efficiency of the thermoelectric device itself.


Author(s):  
Linden K. Allison ◽  
Trisha Andrew

Abstract Wearable thermoelectric generator arrays have the potential to use waste body heat to power on-body sensors and create, for example, self-powered health monitoring systems. In this work, we demonstrate that a surface coating of a conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT-Cl), created on one face of a wool felt using a chemical vapor deposition method was able to manifest a Seebeck voltage when subjected to a temperature gradient. The wool felt devices can produce voltage outputs of up to 120 mV when measured on a human body. Herein, we present a strategy to create arrays of polymer-coated fabric thermopiles and to integrate such arrays into familiar garments that could become a part of a consumer’s daily wardrobe. Using wool felt as the substrate fabric onto which the conducting polymer coating is created allowed for a higher mass loading of the polymer on the fabric surface and shorter thermoelectric legs, as compared to our previous iteration. Six or eight of these PEDOT-Cl coated wool felt swatches were sewed onto a backing/support fabric and interconnected with silver threads to create a coupled array, which was then patched onto the collar of a commercial three-quarter zip jacket. The observed power output from a six-leg array while worn by a healthy person at room temperature (ΔT = 15 °C) was 2 µW, which is the highest value currently reported for a polymer thermoelectric device measured at room temperature.


Sign in / Sign up

Export Citation Format

Share Document