scholarly journals Study on antifreeze Properties and pore structure of Basalt Fiber Reinforced Concrete

2020 ◽  
Vol 1605 ◽  
pp. 012151
Author(s):  
LIU Jun ◽  
ZHAO Shuo ◽  
LIU Runqing
2020 ◽  
Vol 198 ◽  
pp. 01010
Author(s):  
Duo Wu

Concrete structure will be corroded under acid rain scouring and soaking for a long time, which has a great influence on its durability life. In order to further study the damage characteristics of fiber reinforced concrete under acid rain erosion, the formation mechanism of acid rain and its influence on the corrosion and deterioration of concrete and fiber materials were analyzed in this paper. Taking basalt fiber concrete as an example, the characteristics such as porosity, compressive strength and mechanical indexes were studied and analyzed. Moreover, the reasons for the optimal fiber content was briefly analyzed. The results show that the inner structure of basalt concrete mixed with 0.1% fiber was the most stable and the corrosion resistance was the most satisfying.This conclusion has certain reference significance for the corrosion damage research of fiber reinforced concrete.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Yang Lv ◽  
Xueqian Wu ◽  
Mengran Gao ◽  
Jiaxin Chen ◽  
Yuhao Zhu ◽  
...  

Basalt fiber has arisen new perspectives due to the potential low cost and excellent mechanical performance, together with the use of environmental friendly coir can be beneficial to the development of sustainable construction. In this study, a new composite structure called basalt fiber reinforced polymer (BFRP) tube encased coconut fiber reinforced concrete (CFRC) is developed. The 28-day compression strength of the plain concrete is about 15 MPa, which represents the low-strength poor-quality concrete widely existing in many old buildings and developing countries. Three types of BFRP tubes, i.e., 2-layer, 4-layer, and 6-layer, with the inner diameter of 100 mm and a length of 520 mm, were prepared. The plain concrete (PC) and CFRC were poured and cured in these tubes to fabricated BFRP tube confined long cylindrical beams. Three PC cylindrical beams and 3 CFRC cylindrical beams were prepared to be the control group. The four-point bending tests of these specimens were carried out to investigate the enhancement due to the BFRP tube and coir reinforcement. The load-carrying capacity, force-displacement relationship, failure mode, and the cracking moment were analyzed. Results show that both BFRP tube confined plain concrete (PC) and BFRP tube confined CFRC have excellent flexural strength and ductility, and the inclusion of the coir can further enhance the ductility of the concrete.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Dao-yuan Wang ◽  
Jia-suo Qi ◽  
Guang-yao Cui ◽  
Yanling Yang ◽  
Jie Chang

Adding fiber can improve the brittleness of plain concrete. Compared with plain concrete, basalt fiber-reinforced concrete has the advantages of strengthening, toughening, and crack resistance. Compared with steel fiber-reinforced concrete, basalt fiber-reinforced concrete has better construction performance. Basalt fiber concrete is a type of inorganic material with environmental protection and high mechanical properties, which has an important mechanical advantage for controlling the deformation of the soft surrounding rock tunnel. Through the indoor model test of mechanical behavior of reinforced concrete and basalt fiber-reinforced concrete lining, the bearing characteristics of basalt fiber-reinforced concrete lining was studied. The results show that, compared with reinforced concrete, the initial crack load of basalt fiber-reinforced concrete is increased by 20%; the toughness of lining structure is enhanced by adding basalt fiber, and the lining can still bear large bending moment and deformation after the initial crack appears; after the initial crack appears, the bearing characteristic curve of reinforced concrete lining rises slowly and converges rapidly; the bearing characteristic curve of basalt fiber-reinforced concrete lining rises slowly, and there is no sign of convergence when it reaches 2 times of initial crack load. For the soft surrounding rock tunnel, it is necessary to seal the rock surface as early as possible, provide support as soon as possible, and have a certain deformation capacity. Basalt fiber-reinforced concrete can better meet these needs.


2011 ◽  
Vol 243-249 ◽  
pp. 1058-1061
Author(s):  
Jun Wang ◽  
Huan Jun Ye ◽  
Zhi Wei Sun ◽  
Wei Chen

In order to research the influence of basalt fiber on the crack and deflection of the reinforced concrete beams, four basalt fiber reinforced concrete beams with the key parameters of length which were 12mm and 30mm and volume ratio which were 0.1% and 0.2% were designed and made. The test data was obtained through the bending experiment and the comparison with the common reinforced concrete beam. The result shows that it is obvious to control the crack and deflection of the test beams with the increasing of basalt fiber characteristic parameters. The calculation method of the maximum crack width of the basalt fiber reinforced concrete beams were presented based on the method of common concrete beam, which can provide the theoretical basis for the engineering practice.


Sign in / Sign up

Export Citation Format

Share Document