scholarly journals Heat transfer behind a sudden expansion in a round tube with variation of the expansion ratio

2020 ◽  
Vol 1677 ◽  
pp. 012030
Author(s):  
V I Terekhov ◽  
T V Bogatko
2005 ◽  
Author(s):  
Hiroyuki Yoshikawa ◽  
Kimitake Ishikawa ◽  
Terukazu Ota

Numerical results of a three-dimensional unsteady separated flow and heat transfer in a sudden expansion rectangular channel are presented. A direct numerical simulation methodology was employed in the calculations using the finite difference method. Treated in the present study is a rectangular channel of aspect ratio AR = 4.0 and expansion ratio ER = 2.5 in a Reynolds number range from 200 to 1000. It is found that the flow becomes unsteady at Re = 400 and severely complicated at Re = 500 to 1000. The heat transfer characteristics are presented and discussed in relation to the flow ones.


2016 ◽  
Vol 20 (5) ◽  
pp. 1621-1632 ◽  
Author(s):  
Hussein Togun ◽  
Tuqa Abdulrazzaq ◽  
Salim Kazi ◽  
Ahmad Badarudin

This paper presents a study of heat transfer to turbulent air flow in the abrupt axisymmetric expansion of an annular pipe. The experimental investigations were performed in the Reynolds number range from 5000 to 30000, the heat flux varied from 1000 to 4000 W/m2, and the expansion ratio was maintained at D/d=1, 1.25, 1.67 and 2. The sudden expansion was created by changing the inner diameter of the entrance pipe to an annular passage. The outer diameter of the inner pipe and the inner diameter of the outer pipe are 2.5 and 10 cm, respectively, where both of the pipes are subjected to uniform heat flux. The distribution of the surface temperature of the test pipe and the local Nusselt number are presented in this investigation. Due to sudden expansion in the cross section of the annular pipe, a separation flow was created, which enhanced the heat transfer. The reduction of the surface temperature on the outer and inner pipes increased with the increase of the expansion ratio and the Reynolds number, and increased with the decrease of the heat flux to the annular pipe. The peak of the local Nusselt number was between 1.64 and 1.7 of the outer and inner pipes for Reynolds numbers varied from 5000 to 30000, and the increase of the local Nusselt number represented the augmentation of the heat transfer rate in the sudden expansion of the annular pipe. This research also showed a maximum heat transfer enhancement of 63-78% for the outer and inner pipes at an expansion ratio of D/d=2 at a Re=30000 and a heat flux of 4000W/m2.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1784 ◽  
Author(s):  
Weixuan Li ◽  
Xiong Chen ◽  
Wenxiang Cai ◽  
Omer Musa

In this paper, the effect of sudden expansion ratio of solid fuel ramjet (SFRJ) combustor is numerically investigated with swirl flow. A computational fluid dynamics (CFD) code is written in FORTRAN to simulate the combustion and flow patterns in the combustion chamber. The connected-pipe facility is used to perform the experiment with swirl, and high-density Polyethylene (HDPE) is used as the solid fuel. The investigation is performed with different sudden expansion ratios, in which the port and inlet diameters are independently varied. The results indicated that the self-sustained combustion of the SFRJ occurs around the reattachment point at first, and then the heat released in reattachment point is used to achieve the self-sustained combustion in the redevelopment zone. The average regression rate is proportional to the sudden expansion ratio for the cases with a fixed port diameter, which is mainly dominated by the enhancement of heat transfer in backward-facing step. However, the average regression rate is inversely proportional to the sudden expansion ratio for the cases with fixed inlet diameter, which is influenced by the heat transfer mechanism of developed turbulent flow in the redevelopment zone.


2000 ◽  
Vol 53 (8) ◽  
pp. 219-235 ◽  
Author(s):  
Terukazu Ota

Heat and mass transfer in the separated, reattached, and redeveloping regions of incompressible or compressible flow is very important in relation to many types of heat exchangers. There have been numerous works published describing these flows for a wide variety of geometric configurations, In the present article, a survey is made of published studies of heat transfer in the separated, reattached, and redeveloping regions of incompressible flow around or in a wide variety of flow configurations. Flow configurations cited in the article are the downward facing step, the sudden expansion plane channel, the abrupt expansion tube, the blunt flat plate, the longitudinal blunt circular cylinder, and the surface mounted obstacle. The laminar and turbulent flow cases using both experimental and numerical methodologies are reviewed. This review article includes 268 references.


1987 ◽  
Vol 20 (1) ◽  
pp. 65-70 ◽  
Author(s):  
HIROMOTO USUI ◽  
YOSHITO YAMASAKI ◽  
YUJI SANO
Keyword(s):  

Author(s):  
Francine Battaglia ◽  
George Papadopoulos

The effect of three-dimensionality on low Reynolds number flows past a symmetric sudden expansion in a channel was investigated. The geometric expansion ratio of in the current study was 2:1 and the aspect ratio was 6:1. Both experimental velocity measurements and two- and three-dimensional simulations for the flow along the centerplane of the rectangular duct are presented for Reynolds numbers in the range of 150 to 600. Comparison of the two-dimensional simulations with the experiments revealed that the simulations fail to capture completely the total expansion effect on the flow, which couples both geometric and hydrodynamic effects. To properly do so requires the definition of an effective expansion ratio, which is the ratio of the downstream and upstream hydraulic diameters and is therefore a function of both the expansion and aspect ratios. When the two-dimensional geometry was consistent with the effective expansion ratio, the new results agreed well with the three-dimensional simulations and the experiments. Furthermore, in the range of Reynolds numbers investigated, the laminar flow through the expansion underwent a symmetry-breaking bifurcation. The critical Reynolds number evaluated from the experiments and the simulations was compared to other values reported in the literature. Overall, side-wall proximity was found to enhance flow stability, helping to sustain laminar flow symmetry to higher Reynolds numbers in comparison to nominally two-dimensional double-expansion geometries. Lastly, and most importantly, when the logarithm of the critical Reynolds number from all these studies was plotted against the reciprocal of the effective expansion ratio, a linear trend emerged that uniquely captured the bifurcation dynamics of all symmetric double-sided planar expansions.


In this work, bifurcation characteristics of unsteady, viscous, Newtonian laminar flow in two-dimensional sudden expansion and sudden contraction-expansion channels have been studied for different values of expansion ratio. The governing equations have been solved using finite volume method and FLUENT software has been employed to visualize the simulation results. Three different mesh studies have been performed to calculate critical Reynolds number (Recr) for different types of bifurcation phenomena. It is found that Recr decreases with the increase in expansion ratio (ER).


2005 ◽  
Vol 127 (5) ◽  
pp. 865-871 ◽  
Author(s):  
Kazuaki Sugawara ◽  
Hiroyuki Yoshikawa ◽  
Terukazu Ota

The LES method was applied to analyze numerically an unsteady turbulent separated and reattached flow and heat transfer in a symmetric expansion plane channel of expansion ratio 2.0. The Smagorinsky model was used in the analysis and fundamental equations were discretized by means of the finite difference method, and their resulting finite difference equations were solved using the SMAC method. The calculations were conducted for Re=15,000. It is found that the present numerical results, in general, agree well with the previous experimental ones. The complicated vortical flow structures in the channel and their correlations with heat transfer characteristics are visualized through various fields of flow quantities.


Sign in / Sign up

Export Citation Format

Share Document